
Neural Control Variates

THOMAS MÜLLER, NVIDIA
FABRICE ROUSSELLE, NVIDIA
ALEXANDER KELLER, NVIDIA
JAN NOVÁK, NVIDIA

(a) Neural control variate
Integrand

𝑓 = 𝑓s · 𝐿i · cos

Learned control
variate 𝑔 ≈ 𝑓

Learned
𝐺 =

∫
𝑔 (𝜔) d𝜔

(c) Heuristic
termination

(b) Residual neural sampling

Absolute difference
|𝑓 − 𝑔 |

Learned PDF
𝑝 ∝∼ |𝑓 − 𝑔 |

Unbiased Biased

(d) Rendering results of the Veach Door scene NIS++ NCV + heuristic Reference

MAPE: 0.060 0.036 0.024

Fig. 1. When applied to light-transport simulation, our neural control-variate algorithm (a) learns an approximation𝐺 of the scattered light field and corrects
the approximation error by estimating the difference between the original integrand 𝑓 and the corresponding learned control variate 𝑔. This is enabled by our
construction that couples 𝑔 and𝐺 such that 𝑔 always exactly integrates to𝐺 . To further reduce noise, we importance sample the absolute difference |𝑓 − 𝑔 |
using a learned probability density function (PDF) 𝑝 (b). We also provide a heuristic (c) to terminate paths without estimating the difference. This reduces the
mean path length and removes most of the remaining noise. On the right (d), we compare the error of rendering the Veach Door scene using an improved
variant (NIS++) of neural importance sampling [Müller et al. 2019] to our neural control variates (NCV) with and without our path termination heuristic.

We propose neural control variates (NCV) for unbiased variance reduction
in parametric Monte Carlo integration. So far, the core challenge of applying
the method of control variates has been finding a good approximation of the
integrand that is cheap to integrate. We show that a set of neural networks
can face that challenge: a normalizing flow that approximates the shape of
the integrand and another neural network that infers the solution of the
integral equation. We also propose to leverage a neural importance sampler
to estimate the difference between the original integrand and the learned
control variate. To optimize the resulting parametric estimator, we derive a
theoretically optimal, variance-minimizing loss function, and propose an al-
ternative, composite loss for stable online training in practice. When applied
to light transport simulation, neural control variates are capable of matching
the state-of-the-art performance of other unbiased approaches, while pro-
viding means to develop more performant, practical solutions. Specifically,
we show that the learned light-field approximation is of sufficient quality
for high-order bounces, allowing us to omit the error correction and thereby
dramatically reduce the noise at the cost of negligible visible bias.

CCSConcepts: •Computingmethodologies→Neural networks;
Ray tracing; Supervised learning by regression; •Mathematics of
computing→ Sequential Monte Carlo methods.

Authors’ addresses: Thomas Müller, NVIDIA, tmueller@nvidia.com; Fabrice Rousselle,
NVIDIA, frousselle@nvidia.com; Alexander Keller, NVIDIA, akeller@nvidia.com; Jan
Novák, NVIDIA, jnovak@nvidia.com.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution.

ACM Reference Format:
Thomas Müller, Fabrice Rousselle, Alexander Keller, and Jan Novák. 2020.
Neural Control Variates. ACM Trans. Graph. 39, 6, Article 243 (Decem-
ber 2020), 19 pages. https://doi.org/10.1145/3414685.3417804

1 INTRODUCTION
Monte Carlo (MC) integration is a simple numerical recipe for solv-
ing complicated integration problems. The main drawback of the
straightforward approach is the relatively slow convergence rate
that manifests as high variance of MC estimators. Hence, many ap-
proaches have been developed to improve the efficiency. Among the
most frequently used ones are techniques focusing on carefully plac-
ing samples, e.g. antithetic sampling, stratification, quasi-random
sampling, or importance sampling. A complimentary way to further
reduce variance is to leverage hierarchical integration or the concept
of control variates. In this article, we focus on the latter approach
and present parametric control variates based on neural networks.

Reducing variance by control variates (CV) amounts to leveraging
an approximate solution of the integral corrected by an estimate
of the approximation error. The principle is given by the following
identity:

𝐹 =

∫
D

𝑓 (𝑥) d𝑥 = 𝛼 ·𝐺 +
∫
D

𝑓 (𝑥) − 𝛼 · 𝑔(𝑥) d𝑥 . (1)

Instead of integrating the original function 𝑓 to obtain the solution
𝐹 , we leverage an 𝛼-scaled approximation 𝐺 , that corresponds to
integrating a (different) function 𝑔—the control variate—over the

ACM Trans. Graph., Vol. 39, No. 6, Article 243. Publication date: December 2020.

https://doi.org/10.1145/3414685.3417804

243:2 • Müller et al.

same domain D, i.e. 𝐺 =
∫
D 𝑔(𝑥) d𝑥 (we drop D in the rest of

this section for brevity). The approximation error is corrected by
adding an integral of the difference 𝑓 (𝑥) − 𝛼 · 𝑔(𝑥); this makes the
right-hand side equal to the left-hand one.
The numerical efficiency of estimating the right-hand side, rela-

tive to estimating the original integral, depends on the scaled control
variate making the integration easier, for example by making the
integrand smoother as illustrated in Figure 2. This will typically be
the case as long as 𝑓 and 𝑔 are (anti-)correlated. In fact, the scal-
ing coefficient 𝛼 , which controls the strength of applying the CV,
should be derived from the correlation of the two functions. In a
nutshell, a successful application of control variates necessitates a 𝑔
that approximates the integrand 𝑓 sufficiently well, and permits an
efficient evaluation and computation of 𝐺 and 𝛼 .
In this work, we propose to infer the control variate 𝑔 from ob-

servations of 𝑓 using machine learning. Since the control variate
is learned, the main challenge becomes representing it in a form
that permits (efficiently) computing its integral, 𝐺 =

∫
𝑔(𝑥) d𝑥 . We

propose to sidestep this integration problem by introducing a CV
model that satisfies 𝐺 =

∫
𝑔(𝑥) d𝑥 by construction: we decompose

the control variate 𝑔(𝑥) into its normalized form—the shape 𝑔(𝑥)—
and its integral 𝐺 , such that 𝑔(𝑥) = 𝑔(𝑥) · 𝐺 . The shape and the
integral can be modeled independently. We infer the integral 𝐺 and
the coefficient 𝛼 using one neural network for each. For the shape
𝑔, we leverage a tailored variant of normalizing flows, which are
capable of representing normalized functions. The parameters of
the flow are inferred using a set of neural networks.
When the control variate is designed well, the residual integral∫
𝑓 (𝑥) − 𝛼 · 𝑔(𝑥) d𝑥 carries less energy than the original integral∫
𝑓 (𝑥) d𝑥 . However, the residual integrand may feature shapes that

are hard to sample with hand-crafted distributions; this is why many
prior works in graphics did not demonstrate significant efficiency
gains when combining control variates with importance sampling.

We address this by employing neural importance sampling (NIS)
as proposed by Müller et al. [2019] that is capable of importance
sampling arbitrary integrands, including the residual ones in our
case. We show that an estimator that utilizes both techniques, NCV
and NIS, features the strengths of each approach as long as all
trainable parameters are optimized jointly; to that end we derive
two loss functions, one theoretically optimal and one that yields
robust optimization in practice.
We demonstrate the benefits of neural control variates on light-

transport simulations governed by Fredholm integral equations of
the second kind. These are notoriously difficult to solve efficiently
due to their recursive nature, often necessitating high-dimensional
samples in the form of multi-vertex transport paths (obtained using
e.g. path tracing). In this context, control variates offer two com-
pelling advantages over prior works that only focus on placing the
samples. First, control variates reduce the number of constructed
path vertices as the difference integral typically carries less energy
than the original integral. Paths can thus be terminated earlier using
the learned scattered radiance as an approximation of the true scat-
tered radiance; we propose a heuristic that minimizes the resulting
bias. Second, control variates trivially support spectrally resolved
path tracing by using a different 𝑔 for each spectral band. To avoid

𝑓 (𝑥)

𝑔 (𝑥)

𝛼𝑔 (𝑥)

𝑓 (𝑥) − 𝛼𝑔 (𝑥)

𝑓 (𝑥) − 𝑔 (𝑥)

Fig. 2. Computing an integral 𝐹 of a function 𝑓 (𝑥) with the help of a control
variate 𝑔 (𝑥) (left) amounts to using a known (or efficient-to-compute) inte-
gral𝐺 =

∫
𝑔 (𝑥) d𝑥 and adding the integrated difference 𝑓 (𝑥) −𝑔 (𝑥) (right).

The overall variance may be reduced by minimizing the variance of the dif-
ference using an 𝛼-scaled control variate, where 𝛼 = Cov(𝑓 , 𝑔)/Var(𝑔) .

computational overhead of using potentially many control variates,
we develop a novel normalizing flow that can represent multiple
(ideally correlated) control variates at once. Spectral noise, which
is typical for importance sampling that only targets scalar distribu-
tions, is thus largely suppressed. The benefits are clearly notable in
several of our test scenes.

In summary, we present the following contributions:
• a tractable neural control variate modeled as the product of
normalized shape 𝑔 and the integral 𝐺 ,

• a multi-channel normalizing flow for efficient handling of
spectral integrands,

• an estimator combining neural control variates with neural
importance sampling, for which we present

• a variance-optimal loss derived from first principles, and an
empirical composite loss that yields stable online optimization
on noisy estimates of 𝑓 (𝑥), and finally,

• a practical light-transport simulator that heuristically omits
estimating the residual integral when visible bias is negligible.

2 RELATED WORK
The application of control variates has been explored in many fields,
predominantly in the field of financial mathematics and operations
research, see [Broadie and Glasserman 1998; Hesterberg and Nelson
1998; Kemna and Vorst 1990] for examples. Later on, Glynn and
Szechtman [2002] focused on relating the concept to antithetic sam-
pling, rotation sampling, and stratification, among other techniques.
In computer graphics, Rousselle et al. [2016] link control variates
to solving the Poisson equation in screen space and Kondapaneni
et al. [2019] use the concept to interpret their optimally weighted
multiple-importance sampler.
Since a poorly chosen control variate may even decrease effi-

ciency, early research focused on an efficient and accurate estimation
of the scaling coefficient 𝛼 . While the optimal, variance-minimizing
value of 𝛼 is known to be Cov(𝑓 , 𝑔)/Var(𝑔) (see Figure 2 for an
illustration), estimating it numerically may introduce bias if done
using samples correlated to the samples used for the actual esti-
mate [Lavenberg et al. 1982; Nelson 1990]. We resolve this issue by
providing recipes for obtaining 𝛼 that do not bias the estimator.
We are not the first to apply control variates to light transport

simulation. Lafortune andWillems successfully leveraged CVs based

ACM Trans. Graph., Vol. 39, No. 6, Article 243. Publication date: December 2020.

Neural Control Variates • 243:3

on ambient illumination [1994] and hierarchically stored radiance
values [1995] to accelerate the convergence of path tracing. Pe-
goraro et al. [2008a,b] applied a similar idea to volumetric path
tracing, but were restricted to near-isotropic volumes. Fan et al.
[2006] and Kondapaneni et al. [2019] use a linear combination of
multiple importance-sampling densities as a control variate, which
is an adaptation of a technique by Owen and Zhou [2000]. Others
proposed to apply CVs to carefully chosen subproblems, such as
estimating direct illumination [Clarberg and Akenine-Möller 2008;
Szécsi et al. 2004], sampling free-flight distances in participating
media [Georgiev et al. 2019; Novák et al. 2014; Szirmay-Kalos et al.
2011], or unbiased denoising and re-rendering [Rousselle et al. 2016;
Yamaguchi et al. 2018].

One of the challenges of successfully applying control variates
is an efficient estimation of the residual integral

∫
𝑓 (𝑥) − 𝑔(𝑥) d𝑥 ;

this is typically harder than (importance) sampling 𝑓 alone. We
demonstrate that parametric trainable control variates can be well
complemented by trainable importance samplers (such as neural
importance sampling [Müller et al. 2019]) yielding better results
than each technique in isolation.

Multi-level Monte Carlo integration. Heinrich [1998; 2000] pro-
posed to apply the CV concept in a hierarchical fashion: Each suc-
cessive estimator of a difference improves the estimate of its pre-
decessor. This technique is known as multi-level Monte Carlo inte-
gration and it has been applied in stochastic modeling [Giles 2008],
solving partial differential equations [Barth et al. 2011], or image
synthesis [Keller 2001]; see the review by Giles [2013] for other ap-
plications. While the allocation of samples across the estimators is
key to efficiency, classic representations of functions quickly render
the approach intractable in higher dimensions.

Realistic image synthesis with neural networks. Similar to Monte
Carlo methods for high-dimensional integration, neural networks
are especially helpful in high-dimensional approximation. In com-
puter graphics, they have been shown very suitable for compressing
and inferring fields of radiative quantities (or their approximations)
in screen space [Nalbach et al. 2017], on surfaces [Maximov et al.
2019; Ren et al. 2013; Thies et al. 2019; Vicini et al. 2019], on point
clouds [Hermosilla et al. 2019], or in free space [Kallweit et al. 2017;
Lombardi et al. 2019; Meka et al. 2019; Sitzmann et al. 2018]; see
the survey by [Tewari et al. 2020] for additional examples. These
approaches are largely orthogonal to our technique. In fact, many
of these ideas may improve the learning and representation of the
approximate solution 𝐺 in specific situations. For instance, one
could employ voxel grids with warping fields instead of multi-layer
perceptrons [Lombardi et al. 2019], combat overfitting using mip-
level hierarchies [Thies et al. 2019], or handle scene partitions using
dedicated networks [Ren et al. 2013]; shall the application need it.
Leaving these as possible future extensions, we instead focus on a
shortcoming that is common to all the aforementioned approaches:
occasional deviations from the ground-truth solution observable as
e.g. patchiness, loss of contrast, or dull highlights. We propose to
correct the errors using the mechanism of control variates, i.e. we
add an estimate of the difference between the correct solution and

the approximation to recover unbiased results with error manifest-
ing merely as noise. We view our neural control variates as a step
towards bringing data-driven and physically-based rendering closer.

Normalizing flows. Normalizing flows [Tabak and Turner 2013;
Tabak and Vanden Eijnden 2010] are a technique for mapping arbi-
trary distributions to a base distribution; e.g. the normal distribution.
The mappings are formally obtained by chaining an infinite series of
infinitesimal transformations, hence the name flow. The technique
has been successfully leveraged for variational inference, either in
the continuous form [Chen et al. 2018] or as a finite sequence of
warps [Dinh et al. 2014; Rezende and Mohamed 2015]. Numerous
improvements followed soon after: the modeling power of individ-
ual transforms has been enhanced using non-volume preserving
warps [Dinh et al. 2016], piecewise-polynomial warps [Müller et al.
2019], or by injecting learnable 1 × 1 convolutions between the
warps [Kingma and Dhariwal 2018]. Others have demonstrated ben-
efits by formulating the estimation autoregressively [Huang et al.
2018; Kingma et al. 2016; Papamakarios et al. 2017]; we refer the
reader to the surveys by Kobyzev et al. [2019]; Papamakarios et al.
[2019] for an introduction and comparisons of different approaches.
In light transport simulation, Zheng and Zwicker [2019] and

Müller et al. [2019] leverage modified normalizing flows to learn
and sample from parametric distributions. In analogy, we use our
multi-channel flow to represent the spectrally resolved per-channel
normalized form 𝑔 of the control variate 𝑔.

(Neural) Control Variates based on Stein’s identity and beyond.
Assaraf and Caffarel [1999] suggest representing the control vari-
ate in terms of the score function 𝑠 (𝑥) = ∇ log𝑝 (𝑥), where 𝑝 (𝑥)
is the importance-sampling density. The score function has zero
expectation, i.e. E𝑝 [𝑠 (𝑥)] = 0, trivially allowing its use as a control
variate of a stochastic estimator. Through Stein’s [1972] identity,
the score function can be reparameterized to act as an effective
control variate. Many such reparameterizations were proposed, be
they parametric polynomials [Assaraf and Caffarel 1999; Mira et al.
2013], non-parametric [Oates et al. 2014], or parameterized by neural
networks [Grathwohl et al. 2018; Wan et al. 2019].

In contrast to our use of normalizing flows, using the score func-
tion and Stein’s identity as a control variate has one major limitation:
the integral of the control variate 𝐺 is unknown—one only knows
that the expectation of the control variate under samples from 𝑝 is
zero. This limitation results in the following practical shortcomings:
(i) it is not possible to use the CV integral𝐺 as a light-field approx-
imation in the way we propose, and (ii) it is difficult to adapt the
sampling density 𝑝 to the control variate; optimizing the sampling
density to importance sample the residual difference |𝑓 − 𝑔| would
alter the score function and thereby the control variate, creating a
circular dependency. In future work, it may be possible to derive a
joint optimization between score-function-based control variates
and importance sampling similar to our unbiased variance loss.
Beyond Stein’s identity, neural networks were also used control
variates based on the Martingale representation theorem for solving
partial differential equations [Vidales et al. 2018].

ACM Trans. Graph., Vol. 39, No. 6, Article 243. Publication date: December 2020.

243:4 • Müller et al.

3 PARAMETRIC TRAINABLE CONTROL VARIATES
In this section, we propose a novel model for trainable control
variates in the context of integro-approximation: our goal is to
reduce the variance of estimating the parametric integral

𝐹 (𝑦) =
∫
D

𝑓 (𝑥,𝑦) d𝑥

= 𝛼 (𝑦) ·𝐺 (𝑦) +
∫
D

𝑓 (𝑥,𝑦) − 𝛼 (𝑦) · 𝑔(𝑥,𝑦) d𝑥 (2)

parameterized by 𝑦 using the control variate 𝑔. This means that we
need to represent and approximate functions besides computing
integrals. For instance, in the light transport application of Section 6,
𝐹 (𝑦) is the reflected radiance and the parameter 𝑦 represents the
reflection location and direction.
In many applications and especially in computer graphics, the

functions 𝐹 (𝑦) and 𝑓 (𝑥,𝑦) may have infinite variation and lack
smoothness. Their models thus need to be sufficiently flexible and
highly expressive. Therefore, we make the design decision to model
the CV using neural networks driven by an optimizable set of pa-
rameters 𝜃𝑔 ; a discussion of alternatives is deferred to Section 8.

Tractable neural control variates. In order to use Equation (2),
the neural model must permit an efficient evaluation of the control
variate 𝑔(𝑥,𝑦;𝜃𝑔) and its integral𝐺 (𝑦) =

∫
𝑔(𝑥,𝑦;𝜃𝑔) d𝑥 . This turns

out to be the key challenge. Modeling 𝑔 using a neural network
may be sufficiently expressive, but computing the integral 𝐺 would
require some form of numerical integration necessitating multiple
forward passes to evaluate 𝑔(𝑥,𝑦;𝜃𝑔); a cost that is too high.

We avoid this issue by restricting ourselves to functions where the
integral is known. Specifically, we consider normalized functions
that integrate to 1. Arbitrary integrands can still be matched by
scaling the normalized function by a (learned) factor. Hence, our
parametric control variate

𝑔(𝑥,𝑦;𝜃𝑔) := 𝑔(𝑥,𝑦;𝜃𝑔) ·𝐺 (𝑦;𝜃𝐺) (3)

is defined as the product of two components: a parametric nor-
malized function 𝑔(𝑥,𝑦;𝜃𝑔) and a parametric scalar value 𝐺 (𝑦;𝜃𝐺).
From now on, we refer to𝑔 and𝐺 as the shape and the integral of the
CV, each of which is parameterized by its own set of parameters and
𝜃𝑔 := 𝜃𝑔∪𝜃𝐺 . This decomposition has the advantage that computing
the integral 𝐺 amounts to evaluating a neural network once, rather
than performing a costly numerical integration of 𝑔(𝑥,𝑦;𝜃𝑔) that
requires a large number of network evaluations.

The rest of this section proposes parametric models for the shape
(Section 3.1), the integral (Section 3.2), and the coefficient (Sec-
tion 3.3) of the control variate. Sections 4 and 5 then describe an
efficient combination with a parametric importance sampler and
the optimization of all trainable parameters.

3.1 Modeling the Shape of the Control Variate
We now address the main challenge of modeling CVs using neural
networks: learning normalized functions that we use to represent
the shape 𝑔(𝑥,𝑦;𝜃𝑔) of the CV. Normalizing the output of a neural
network is generally difficult. We thus resort to a class of models
where the network output is used to merely parameterize a transfor-
mation, which can be used to warp a function without changing its

integral. This allows for learning functions that are normalized by
construction. Such models are referred to as normalizing flows (see
e.g. [Kobyzev et al. 2019; Papamakarios et al. 2019]). In what follows,
we briefly review the concept of normalizing flows and discuss the
details of using them to learn the shape of the CV.

Normalizing flow preliminaries. A normalizing flow is a differ-
entiable, multi-dimensional, compound mapping for transforming
probability densities. The mapping ℎ̂ = ℎ𝐿 ◦ · · · ◦ℎ2 ◦ℎ1 comprises 𝐿
bijective warping functions; it is therefore also bijective as a whole.
The warping functions ℎ: X → X′ induce a density change accord-
ing to the change-of-variables formula

𝑝X′ (𝑥 ′) = 𝑝X (𝑥) ·
����det

(
𝜕ℎ(𝑥)
𝜕𝑥𝑇

)����−1
, (4)

where 𝑝 is a probability density, 𝑥 ∈ X is the argument of the warp,
𝑥 ′ = ℎ(𝑥) ∈ X′ is the output of thewarp, and

(
𝜕ℎ (𝑥)
𝜕𝑥𝑇

)
is the Jacobian

matrix of ℎ at 𝑥 .
The density change induced by a chain of 𝐿 such warps can

be obtained by invoking the chain rule. This yields the following
product of absolute values of Jacobian determinants:

𝐽 (𝑥) =
𝐿∏
𝑖=1

�����det
(
𝜕ℎ𝑖 (𝑥𝑖)
𝜕𝑥𝑇

𝑖

)����� , (5)

where now 𝑥1 ≡ 𝑥 . The 𝑖-th term in the product represents the
absolute value of the Jacobian determinant of the 𝑖-th warp with
respect to the output of warp 𝑖 − 1.
The transformed variable 𝑥 = ℎ̂(𝑥) is often referred to as the

latent variable in latent space L. Its distribution is related to the
distribution of the input variable by combining Equations (4,5):

𝑝L (𝑥) = 𝑝X (𝑥)
𝐽 (𝑥) . (6)

The distribution of latent variables 𝑝L (𝑥) is typically chosen to
be simple and easy to sample; we use the uniform distribution
𝑝L (𝑥) ≡ 𝑝U (𝑥) over the unit hypercube.
In order to achieve high modeling power, neural normalizing

flows utilize parametricwarps that are driven by the output of neural
networks. To allow for modeling correlations across dimensions,
the outputs of individual warps need to be fed into neural networks
conditioning the subsequent warps in the flow. In the context of
probabilistic modeling, two main approaches have been proposed
to that end: autoregressive flows [Huang et al. 2018; Kingma et al.
2016; Papamakarios et al. 2017; Rezende and Mohamed 2015] and
coupling flows [Dinh et al. 2014, 2016; Müller et al. 2019]. Both of
these approaches yield flows that are (i) invertible, (ii) avoid the
cubic cost of computing determinants of dense Jacobian matrices,
and (iii) avoid the need to differentiate through the neural network
to compute relevant entries in the Jacobian.
In this work, efficient invertibility of the flow is not needed as

modeling the CV shape requires evaluating the flow in only one
direction. However, we still take advantage of the previously pro-
posed autoregressive formulation to ensure tractable Jacobian de-
terminants. Furthermore, we show that the model can be further
accelerated in cases when multiple densities—specifically, multiple
channels of the control variate—are being learned.

ACM Trans. Graph., Vol. 39, No. 6, Article 243. Publication date: December 2020.

Neural Control Variates • 243:5

(a) Autoregressive sub-flow (b) Per-channel sub-flows (c) Multi-channel flow

𝑥0
𝑖

𝑥1
𝑖

𝑥𝐷
𝑖

𝑥0
𝑖+1

𝑥1
𝑖+1

𝑥𝐷
𝑖+1

𝑚 (𝜙0
𝑖
)

ℎ (𝑥0
𝑖
; ·)

𝑚 (𝑥0
𝑖
;𝜙1

𝑖)

ℎ (𝑥1
𝑖 ; ·)

𝑚 (𝑥<𝐷
𝑖

;𝜙𝐷
𝑖
)

ℎ (𝑥𝐷
𝑖

; ·)

𝑥0

𝑥1

𝑥𝐷

(𝑥0
r , 𝑥

0
g, 𝑥

0
b)

(𝑥1
r , 𝑥

1
g, 𝑥

1
b)

(𝑥𝐷
r , 𝑥𝐷

g , 𝑥𝐷
b)

𝑚 (𝜙0)

ℎ (𝑥0
r ; ·)

𝑚 (𝑥0;𝜙1)

ℎ (𝑥1
r ; ·)

𝑚 (𝑥<𝐷 ;𝜙𝐷)

ℎ (𝑥𝐷
r ; ·)

Fig. 3. We model the shape of the control variate using bijective transformations assuming autoregressive structure (a) as proposed by Kingma et al. [2016] in
the context of probabilistic generative models. Concatenating multiple autoregressive blocks (sub-flows) increases the expressivity of the model. To handle
multiple control variates (e.g. one for each color channel), one can instantiate a flow for each “channel” (b); we avoid repeating the expressions in (b) for
brevity; the only difference to the left illustration is that all 𝑥 and 𝜙 would have a channel subscript. For applications where a single sub-flow is sufficient, such
as the one discussed in Section 6, we propose to use a single network across all channels (c) to keep the evaluation cost largely agnostic to the channel count.

Modeling the CV shape with normalizing flows. Leveraging a nor-
malizing flow to represent the shape 𝑔 of the control variate is
straightforward. We use the unit hypercube with the same number
of dimensions 𝐷 as 𝑔 to be the latent space L. The normalized CV
is then modeled as

𝑔(𝑥) := 𝑝X (𝑥 ;𝜃𝑔) = 𝑝L (𝑥) · 𝐽 (𝑥 ;𝜃𝑔) . (7)

It is worth noting that the product on the right-hand side is nor-
malized by construction: the probability density 𝑝L is normalized
by definition and each warp in the flow merely redistributes the
density without altering the total mass. This is key for ensuring that
𝑔 is and remains normalized during training.

In our implementation, the warps in the normalizing flow assume
an autoregressive structure: dimension 𝑑 in the output 𝑥𝑖+1 of the
𝑖-th warp is conditioned on only the preceding dimensions in the
input 𝑥𝑖 :

𝑥𝑑𝑖+1 = ℎ
(
𝑥𝑑𝑖 ;𝑚(𝑥<𝑑𝑖 ;𝜙𝑑𝑖)

)
, (8)

where the superscript <𝑑 denotes the preceding dimensions,𝑚 is
a neural network, and 𝜙𝑑

𝑖
are its parameters, with 𝜃𝑔 =

⋃
𝑖

⋃
𝑑 𝜙

𝑑
𝑖
.

This ensures tractable Jacobian determinants that are computed
as the product of diagonal terms in the Jacobian matrix of ℎ. The
diagonal terms are specific to the transform ℎ being used—we use
piecewise-quadratic warping functions proposed by Müller et al.
[2019] in our implementation.

Figure 3(a) illustrates the autoregressive structure of the 𝑖-th warp
in the normalizing flow. We adopt the terminology of Papamakarios
et al. [2019] and refer to one autoregressive block as the “sub-flow”.
We utilize an independent network for inferring the warp of each
dimension. The alternative of using a single network for all dimen-
sions requires elaborate masking [Germain et al. 2015; Papamakarios
et al. 2017] to enforce the autoregressive structure. Having an inde-
pendent network per dimension simplifies the implementation and,
more importantly, facilitates network sharing when dealing with
multi-channel control variates.

Multi-channel CV. Many integration problems simultaneously
operate on multiple, potentially correlated channels. In this article,
for instance, we estimate spectrally resolved integrals; one for each
RGB channel. In order to minimize the variance per channel, it is
advantageous to use a separate control variate for each channel
rather than sharing one CV across all channels.
The most straightforward solution is to instantiate a distinct

normalizing flow for each channel; the per-channel sub-flows are
illustrated in Figure 3(b); symbols were dropped for brevity. Unfor-
tunately, this makes the computation cost linear in the number of
channels—a penalty that we strive to avoid.
We propose to keep the cost largely constant by sharing cor-

responding neural networks across the channels. However, since
network sharing introduces correlations across channels, e.g. red
dimensions can influence green dimensions, special care must be
taken to constrain the model correctly.
Merely concatenating the inputs to the 𝑘-th network across the

per-channel flows, and instrumenting the network to produce pa-
rameters for warping dimensions in all 𝑛 channels, is problem-
atic as it corresponds to predicting a single normalized (𝑛 × 𝐷)-
dimensional function. Instead, we need 𝑛 individually normalized,
𝐷-dimensional functions, like in the case of instantiating a distinct
flow for each channel. We must ensure that each channel of the CV
is normalized individually.

Note that since channels can influence each other only after the
first sub-flow, the first sub-flow produces individually normalized
functions, even if the networks are shared across the channels. This
is easy to verify by inspecting the 𝑛𝐷 × 𝑛𝐷 Jacobian matrix con-
structed for all dimensions in all channels. The matrix will have a
block-diagonal structure, where each 𝑑 × 𝑑 block corresponds to
the Jacobian matrix of one of the channels. All entries outside of
the blocks on the diagonal will be zero. This observation allows
us to share the networks as long as we use only one sub-flow to
model each channel of the CV shape; as illustrated in Figure 3(c).
The benefits of sharing the networks are studied in Figure 4.

ACM Trans. Graph., Vol. 39, No. 6, Article 243. Publication date: December 2020.

243:6 • Müller et al.

3.2 Modeling the Integral of the Control Variate
Representing the integral value by a neural network 𝐺 (𝑦;𝜃𝐺) is
fairly straightforward as we can use any architecture. We exponen-
tiate the network output to ensure that the CV integral is always
positive. The combination of the exponentiated network output and
the normalizing flow for the CV shape constrains the CV to be a
non-negative function; negative values are excluded by design. This
is desired for the light-transport application in Section 6 that deals
with non-negative integrands only.

Note that even without the exponentiation, the neural CV may
only be non-negative or non-positive. Then, signed integrands may
be handled using the extension described in Section 8.1.

3.3 Modeling the CV Coefficient
Since the control variate may not match 𝑓 perfectly—our neural CV
is no exception—the variate is weighted by the CV coefficient 𝛼 that
controls its contribution. The optimal, variance-minimizing value of
𝛼 (𝑦) is known to be Cov(𝑓 (𝑥,𝑦), 𝑔(𝑥,𝑦))/Var(𝑔(𝑥,𝑦)) [Lavenberg
et al. 1982; Nelson 1990]. However, computing the optimal value,
which generally varies with 𝑦, can be prohibitively expensive in
practice. We thus model the coefficient using a neural network
𝛼 (𝑦;𝜃𝛼) with a sigmoid output activation that constrains its value to
the interval (0, 1) for numerical robustness. The network is trained
to output the appropriate contribution of the CV in dependence
on the parameter 𝑦. In Section 5, we contribute a loss function for
optimizing the neural network 𝛼 (𝑦;𝜃𝛼) from Monte Carlo estimates
such that it minimizes variance.

Since both 𝛼 and𝐺 are mere scaling factors of 𝑔, one could model
the product 𝛼 ·𝐺 directly. We choose to keep them separate as this
enables approximating 𝐹 by (unweighted) 𝐺 without evaluating
the residual integral. We exercise this option in a biased version of
our light-transport estimator whenever the approximation error is
heuristically determined to be low; details follow in in Section 6.1.

4 MONTE CARLO INTEGRATION WITH NCV
As an evolution of the parametric integral in Equation (2), our para-
metric trainable control variate yields

𝐹 (𝑦) = 𝛼 (𝑦;𝜃𝛼) ·𝐺 (𝑦;𝜃𝐺)

+
∫
D

𝑓 (𝑥,𝑦) − 𝛼 (𝑦;𝜃𝛼) · 𝑔(𝑥,𝑦;𝜃𝑔) d𝑥 , (9)

where the various 𝜃 denote the corresponding model parameter
sets. For the sake of readability, we omit the dependency on 𝑦 in
the following derivations and define the shorthands 𝑔 and 𝐺 that
represent the 𝛼-weighted CV and its corresponding integral:

𝐺 (𝜃
�̂�
) := 𝛼 (𝜃𝛼) ·𝐺 (𝜃𝐺) ; 𝜃

�̂�
:= 𝜃𝛼 ∪ 𝜃𝐺 , (10)

𝑔(𝑥 ;𝜃𝑔) := 𝛼 (𝜃𝛼) · 𝑔(𝑥 ;𝜃𝑔) ; 𝜃𝑔 := 𝜃𝛼 ∪ 𝜃𝐺 ∪ 𝜃𝑔 . (11)

Applying these notational simplifications, a one-sampleMonte Carlo
estimator of Equation (9) amounts to

⟨𝐹 ⟩ = 𝐺 (𝜃
�̂�
) +

𝑓 (𝑋) − 𝑔(𝑋 ;𝜃𝑔)
𝑝 (𝑋 ;𝜃𝑝)

, (12)

where 𝑝 (𝑋 ;𝜃𝑝) ≡ 𝑝 (𝑋,𝑦;𝜃𝑝) is the parametric probability density
of drawing sample 𝑋 .

Importance sampling of the residual integral. To motivate the need
for a parametric PDF model, we note that the variance of Equa-
tion (12) is minimized when the PDF is proportional to the absolute
correction term |𝑓 (𝑋) − 𝑔(𝑋 ;𝜃𝑔) |. Since the CV will be optimized
progressively, the correction term will evolve over time. In the ideal
case, the absolute difference |𝑓 (𝑋) − 𝑔(𝑋 ;𝜃𝑔) | would get uniformly
smaller and the optimal sampling distribution would be uniform,
i.e. constant. However, our experiments showed that despite the
approximation power of neural networks, the numerator is never
sufficiently uniformly bounded to permit a uniform PDF 𝑝U (𝑥) to
perform well in practice.
Accounting for the progressive optimization and the limited ex-

pressivity of the CV, we propose a sampling PDF that combines two
samplers: a defensive sampler (in the following: uniform) that boot-
straps the initial Monte Carlo estimates, and a learned parametric
sampler that can capture the shape of the numerator once the CV
has converged. We combine these two sampling distributions using
multiple importance sampling (MIS) [Veach and Guibas 1995] with
learned probabilities for selecting the PDFs [Müller et al. 2019].
We target the neural importance sampling probability density

𝑝NIS [Müller et al. 2019] at the difference in the numerator of Equa-
tion (12). To probabilistically select between uniform sampling 𝑝U
and 𝑝NIS we train a parametric neural network 𝑐 (𝑥 ;𝜃𝑐) that ap-
proximates the variance-optimal selection probabilities of 𝑝NIS. We
closely follow the approach by Müller et al. [2019] (including the
prevention of degenerate training by the 𝛽 parameter) optimizing
𝑐 (𝑥 ;𝜃𝑐) concurrently with the CV and PDF models to strike a good
balance between uniform and neural importance sampling at any
time during the training process. The final PDF reads:

𝑝 (𝑥 ;𝜃𝑝) =
(
1 − 𝑐 (𝑥 ;𝜃𝑐)

)
𝑝U (𝑥) + 𝑐 (𝑥 ;𝜃𝑐) 𝑝NIS (𝑥 ;𝜃NIS) , (13)

where 𝜃𝑝 := 𝜃𝑐 ∪ 𝜃NIS.

Spectral 2D example. We demonstrate the efficiency benefits of
using our neural control variates for variance reduction in Fig-
ure 4. We compare neural importance sampling [Müller et al. 2019]
alone to three flavors of our full estimator from Equation (12): (i)
a monochromatic, single-channel flow, (ii) multiple independent
flows (one per channel), and (iii) the proposed multi-channel flow.
The multi-channel flow consistently achieves the highest efficiency,
while learning only slightly worse control variates than multiple
independent flows. Note how the sampling PDF focuses on the high-
frequency detail that our control variates do not perfectly capture.

5 OPTIMIZATION
In this section, we derive a theoretically optimal, variance-minimizing
loss for optimizing the parameters of the CV and the sampling distri-
bution. We then propose an empirical, composite loss that provided
better performance and stable optimization in our experiments.

5.1 Minimizing Variance by Optimization
Our goal is to minimize the variance of the CV estimator by training
the neural networks using a convergent gradient-based optimizer.
Stochastic gradient descent provably converges to local optima

ACM Trans. Graph., Vol. 39, No. 6, Article 243. Publication date: December 2020.

Neural Control Variates • 243:7

(a) NIS (b) NCV—monochromatic (1 flow) (c) NCV—spectral (3 flows) (d) NCV—spectral (1 multi-channel flow) (e) Reference

𝑝 ∝∼ 𝑓 𝑔 ≈ 𝑓 |𝑓 − 𝑔 | 𝑝 ∝∼ |𝑓 − 𝑔 | 𝑔 ≈ 𝑓 |𝑓 − 𝑔 | 𝑝 ∝∼ |𝑓 − 𝑔 | 𝑔 ≈ 𝑓 |𝑓 − 𝑔 | 𝑝 ∝∼ |𝑓 − 𝑔 | Integrand 𝑓

Ka
nd

in
sk
y

Efficiency: 0.013 Efficiency: 0.010 Efficiency: 0.216 Efficiency: 0.228

Fe
lin

e
Pr
ed
at
or

Efficiency: 0.059 Efficiency: 0.084 Efficiency: 0.242 Efficiency: 0.312

Fig. 4. Comparison of neural importance sampling (a) [Müller et al. 2019] and various flavors of our neural control variates (b, c, d) on two toy integration
problems (rows). The integrands are 2D images with 3 color channels (e); the goal is to estimate the average color of the images. We report the Monte Carlo
efficiency, defined as

(
V[⟨𝐹 ⟩] · runtime

)−1, of using the different techniques after each technique’s training converged. We also visualize the functions
learned during the MC estimation, i.e. the sampling PDF 𝑝 and the control variate 𝑔. NIS (a) is the least efficient method, because importance sampling can
only target a scalar quantity—in this case the average of the 3 channels. Applying our NCVs, even with a single monochromatic flow (b), improves efficiency,
because the learned CV 𝑔 is able to match the average color of the integrand. The learned sampling PDF 𝑝 therefore only needs to focus on the remaining
color variation in the residual difference |𝑓 − 𝑔 |. Using three independent flows (c) and using one of our multi-channel flows (d) for the CV 𝑔 both achieve
great additional efficiency gains, because they can model color variation. The residual difference |𝑓 − 𝑔 | is thus much smaller and the sampling PDF 𝑝 focuses
on the remaining approximation error, which consists of sharp edges in the integrand. Our multi-channel flow yields the best MC efficiency: the fit is only
slightly worse than with three flows but the evaluation is much faster.

when driven by unbiased estimates of the loss gradient.1 In this
section, we first derive the variance formula and then show that
unbiased gradient estimates thereof can be computed using auto-
differentiation.
We use the variance

V[⟨𝐹 ⟩] = E
[
⟨𝐹 ⟩2] − E[⟨𝐹 ⟩]2

=

∫
D

(
𝑓 (𝑥) − 𝑔(𝑥 ;𝜃𝑔)

)2

𝑝 (𝑥 ;𝜃𝑝)
d𝑥 −

(
𝐹 −𝐺 (𝜃

�̂�
)
)2

(14)

of the estimator in Equation (12) as the loss function.

Interpretation. Minimizing the first term of Equation (14) corre-
sponds to fitting 𝑔 to 𝑓 in terms of weighted least squares, where
the weights are the inverse sampling density. The weighted-least-
squares distance is minimized when 𝑔(𝑥) = 𝑓 (𝑥), leading to zero
variance. Interestingly, the variance is also zero when the non-zero
first term equals to the second term. Due to this additional degree of
freedom, there exists an entire family of CVs that yield zero variance.
A classical example of such a configuration is a control variate that
matches 𝑓 up to an additive constant, 𝑔(𝑥) = 𝑓 (𝑥) +𝑐 for 𝑐 ∈ R, and
a uniform 𝑝 (𝑥).

Variance with noisy estimates of 𝑓 (𝑥). In many applications, the
original integrand 𝑓 (𝑥) cannot be evaluated analytically. One such

1For a formal proof of convergence, the learning rate must approach zero at a carefully
chosen rate, leading to an impractically slow optimization. Leaving the learning rate
high, the optimization fluctuates around local minima, which is a widely accepted
limitation in machine learning literature.

application is investigated in Section 6, where we apply control vari-
ates to light transport simulation governed by a Fredholm integral
equation.

Generalizing Equation (14), we now demonstrate that noisy esti-
mates of 𝑓 (𝑥) pose no problem for the convergence of the optimizer.
Using the generic notation 𝑓 (𝑥) :=

∫
P 𝑓 (𝑥, 𝑧) d𝑧 and inserting it

into the integral in Equation (9) (with 𝑦 being omitted for brevity as
mentioned before), we obtain

𝐹 = 𝐺 (𝜃
�̂�
) +

∫
D

∫
P
𝑓 (𝑥, 𝑧) d𝑧 − 𝑔(𝑥 ;𝜃𝑔) d𝑥 . (15)

A one-sample Monte Carlo estimator that leverages a single (𝑋,𝑍)
sample to approximate 𝐹 reads

⟨𝐹 ⟩ = 𝐺 (𝜃
�̂�
) + 𝑓 (𝑋,𝑍)

𝑝 (𝑋,𝑍 ;𝜃𝑝)
−

𝑔(𝑋 ;𝜃𝑔)
𝑝 (𝑋 ;𝜃𝑝)

, (16)

where 𝑝 (𝑋,𝑍 ;𝜃𝑝) = 𝑝 (𝑋 ;𝜃𝑝)·𝑝 (𝑍 |𝑋) is the joint probability density
of sampling 𝑋 and 𝑍 , and 𝑝 (𝑋 ;𝜃𝑝) and 𝑝 (𝑍 |𝑋) are the marginal
and conditional densities, respectively.

The variance of the estimator in Equation (16) can be derived in
analogy to the variance of the estimator in Equation (12):

V[⟨𝐹 ⟩] =
∫
D

∫
P

(
𝑓 (𝑥, 𝑧)
𝑝 (𝑧 |𝑥) − 𝑔(𝑥 ;𝜃𝑔)

)2
𝑝 (𝑧 |𝑥)
𝑝 (𝑥 ;𝜃𝑝)

d𝑧d𝑥

−
(
𝐹 −𝐺 (𝜃

�̂�
)
)2; (17)

see Appendix A for a complete derivation.
Finding optimal 𝜃𝑔 , 𝜃�̂� , 𝜃𝑝 that minimize Equation (17) in closed

form is not practical as the equation contains the unknown integral
𝐹 , which we are trying to compute in the first place, and a double

ACM Trans. Graph., Vol. 39, No. 6, Article 243. Publication date: December 2020.

243:8 • Müller et al.

integral, which for meaningful settings in computer graphics is
infeasible to solve analytically. Therefore, we resort to stochastic
gradient-based optimizers that converge to the correct solution even
if the loss is only approximated; provided that its approximation is
unbiased.

Taking advantage of autograd functionality. Using Leibniz’s in-
tegral rule, we can swap the order of differentiation and MC esti-
mation of variance: first estimate variance and then rely on auto-
differentiation in modern optimization tools to compute the gra-
dients. Using Monte Carlo, the variance in Equation (17) can be
estimated using the following unbiased one-sample estimator:

⟨V[⟨𝐹 ⟩]⟩ =

(
𝑓 (𝑋,𝑍)
𝑝 (𝑍 |𝑋) − 𝑔(𝑋 ;𝜃𝑔)

)2
𝑝 (𝑍 |𝑋)

𝑝 (𝑋 ;𝜃𝑝) 𝑞(𝑋) 𝑞(𝑍 |𝑋)

−
(
⟨𝑓 (𝑋)⟩
𝑞(𝑋) −𝐺 (𝜃

�̂�
)
)2

, (18)

where 𝑞 is the density of samples used for estimating the variance.
The estimator can be further simplified assuming that we use the
same conditional densities in ⟨𝐹 ⟩ and ⟨V⟩, i.e. 𝑝 (𝑧 |𝑥) = 𝑞(𝑧 |𝑥), and
interpreting the fraction 𝑓 (𝑋,𝑍)

𝑝 (𝑍 |𝑋) as a one-sample estimator of 𝑓 (𝑋):

⟨V[⟨𝐹 ⟩]⟩ =
(
⟨𝑓 (𝑋)⟩ − 𝛼 (𝜃𝛼)𝑔(𝑋 ;𝜃𝑔)

)2

𝑝 (𝑋 ;𝜃𝑝) 𝑞(𝑋)

−
(
⟨𝑓 (𝑋)⟩
𝑞(𝑋) − 𝛼 (𝜃𝛼)𝐺 (𝜃𝐺)

)2
,

(19)

where the symbols with hats were replaced by their definitions.
The variance estimate in Equation (19) can be used as the loss

function in modern optimization tools based on autograd. Unfortu-
nately, despite being theoretically optimal, our empirical analysis
revealed poor overall performance and unstable optimization when
using this loss.

5.2 Composite Loss for Stable Optimization
The variance of the parametric estimator, Equation (17), can be zero
for an entire family of configurations of 𝜃𝛼 , 𝜃𝑔, 𝜃𝐺 , and 𝜃𝑝 . However,
taking into account the entire Equation (17) for each of the trainable
components led to erratic optimization and often failed to approach
one of the zero-variance configurations in our experiments.

We thus propose a composite loss that is more robust in the pres-
ence of noisy loss estimates. Our composite loss imposes restrictions
as it is zero only for the following zero-variance configuration:

𝐺 (𝜃𝐺) = 𝐹 , (20)

𝑔(𝑥 ;𝜃𝑔) =
𝑓 (𝑥)
𝐹

, (21)

𝑝 (𝑥 ;𝜃𝑝) =
|𝑓 (𝑥) − 𝑔(𝑥 ;𝜃𝑔) |∫

D |𝑓 (𝑥) − 𝑔(𝑥 ;𝜃𝑔) | d𝑥
, and (22)

𝛼 (𝜃𝛼) = 1 . (23)

Despite being more restrictive, decomposing the optimization into
smaller, better-understood optimization tasks leads to better results
in practice than blindly relying on Equation (17). Our composite

loss is the sum of the individual terms:
L = L2 (𝐹,𝐺 ;𝜃𝐺)︸ ︷︷ ︸

CV integral

+L𝐻

(
𝑓 , 𝑔;𝜃𝑔

)︸ ︷︷ ︸
CV shape

+L𝐻

(
|𝑓 − 𝑔|, 𝑝;𝜃𝑝

)︸ ︷︷ ︸
Sampling PDF

+ LV (𝜃𝛼)︸ ︷︷ ︸
𝛼-coefficient

,

(24)
which we detail in the following paragraphs.

CV integral optimization. To satisfy the constraint in Equation (20),
we minimize a relative L2 metric

L2 (𝐹,𝐺 ;𝜃𝐺) =
(
𝐹 −𝐺 (𝜃𝐺)

)2

sg(𝐺 (𝜃𝐺))2 + 𝜖
, (25)

where sg(𝑥) indicates that 𝑥 is treated as a constant, i.e. no gradients
w.r.t. it are computed, and 𝜖 = 1 × 10−2. Our choice of a relative L2

metric has two reasons: first, theL2 metric admits unbiased gradient
estimates when 𝐹 is noisy, and second, relative losses are robust
with respect to a high dynamic range of values. We use 𝐺 (𝜃𝐺)2 as
the normalization constant, as proposed by Lehtinen et al. [2018],
because normalizing by 𝐹 2 [Rousselle et al. 2011] is infeasible—our
goal is to estimate 𝐹 in the first place. 𝐺 (𝜃𝐺)2 merely serving as an
approximation of 𝐹 2 in the denominator is the reason why it must
be treated as a constant for the optimization to be correct—hence
the sg(·) around it. It follows that our Monte Carlo estimator of
L2 (𝐹,𝐺 ;𝜃𝐺), which we feed to automatic differentiation, reads

⟨L2 (𝐹,𝐺 ;𝜃𝐺)⟩ =
(
⟨𝐹 ⟩ −𝐺 (𝜃𝐺)

)2

sg(𝐺 (𝜃𝐺))2 + 𝜖
. (26)

In Figure 5, we illustrate the learned integral when optimizing either
the variance, L2, or relative L2 in the setting of light-transport
simulation as explored in Section 6. The relative L2 loss achieves
the most accurate fit.

CV shape optimization. The CV shape is modeled using a normal-
izing flow, the parameters of which are optimized using the cross
entropy. The cross entropy measures the similarity between two
normalized functions and yields more robust convergence than min-
imizing variance directly [Müller et al. 2019]. Since we aim to satisfy
the constraint in Equation (21), we minimize the cross entropy of
the normalized integrand, 𝑓 (𝑥) = 𝑓 (𝑥)/𝐹 , to the shape of the CV, 𝑔:

L𝐻

(
𝑓 , 𝑔;𝜃𝑔

)
= −

∫
D

𝑓 (𝑥) log
(
𝑔(𝑥 ;𝜃𝑔)

)
d𝑥 . (27)

The main caveat of the cross entropy is that it requires normalizing
the integrand. Despite 𝐹 not being known exactly, approximate
normalization 𝑓 (𝑥) ≈ 𝑓 (𝑥)/𝐺 (𝜃𝐺) is feasible by using the learned
CV integral𝐺 (𝜃𝐺) instead of the exact normalization constant. With
this observation, an approximately normalized MC estimator of the
cross entropy that can be fed to automatic differentiation reads

⟨L𝐻

(
𝑓 , 𝑔;𝜃𝑔

)
⟩ = − ⟨𝑓 (𝑋)⟩

sg(𝐺 (𝜃𝐺)) + 𝜖

log
(
𝑔(𝑋 ;𝜃𝑔)

)
𝑞(𝑋) . (28)

Sampling distribution optimization. Our parametric sampling dis-
tribution 𝑝 (𝑥 ;𝜃𝑝) consists of a normalizing flow 𝑝NIS (𝑥 ;𝜃NIS) as
well as the selection probability 𝑐 (𝑥 ;𝜃𝑐), which are both optimized
using the cross entropy—the same as in neural importance sampling
(NIS) [Müller et al. 2019]. However, in contrast to NIS, which opti-
mizes the flow to match the normalized integrand 𝑓 (𝑥), we optimize

ACM Trans. Graph., Vol. 39, No. 6, Article 243. Publication date: December 2020.

Neural Control Variates • 243:9

Variance loss L2 loss Relative L2 loss Reference

Be
dr

oo
m

MAPE: 0.425 0.162 0.042

Fig. 5. Control Variate integral optimization. Using the estimator variance loss (left) to optimize the CV integral𝐺 effectively merges it with the coefficient 𝛼 ,
resulting in a darker output where the CV shape is a poor match for the target. Using the L2 loss (middle) decouples the CV integral and the coefficient 𝛼 .
The relative L2 loss (right) further improves the model prediction in dark regions, such as the floor under the bed.

Variance + rel. L2 + cross entropy + rel. variance + cross entropy
for all components for CV integral for CV shape for CV alpha for IS Reference

Ba
th

ro
om

MAPE: 0.058 0.056 0.053 0.053 0.046

Fig. 6. Impact of the individual composite-loss terms at equal sample count (512 spp). First, we jointly optimize all components using the variance loss
described in Section 5.1. Then, we progressively replace each variance term by the corresponding term from the composite loss described in Section 5.2.
Optimizing the CV integral using the relative L2 loss has a minor impact on the final reconstruction, but it greatly improves the visual accuracy of the CV
integral (as shown in Figure 5), which in turn enables its use in our biased reconstruction. The accurate CV integral is also a key enabler of the cross entropy
loss that we use to optimize the CV shape and IS component, which proved crucial for the overall robustness and efficiency of our algorithm. Aside of the
numerical and visual improvements, the main benefit of our composite loss lies in its robustness: rendering the Bathroom scene using our proposed composite
loss consistently converged to a satisfying result, whereas using the variance loss frequently resulted in diverging optimizations.

the flow to approximate the normalized absolute difference in Equa-
tion (22). Once again, we approximate the normalization constant by
𝐺 (𝜃𝐺). In addition, we approximate the difference |𝑓 (𝑥) − 𝑔(𝑥 ;𝜃𝑔) |
using the biased estimator

Δ𝑓 ,𝑔 (𝑋) = |⟨𝑓 (𝑋)⟩ − sg(𝑔(𝑋 ;𝜃𝑔)) | ,
resulting in the following cross-entropy estimator for automatic
differentiation:

⟨L𝐻

(
|𝑓 − 𝑔|, 𝑝;𝜃𝑝

)
⟩ = −

Δ𝑓 ,𝑔 (𝑋)
sg(𝐺 (𝜃𝐺)) + 𝜖

log
(
𝑝 (𝑋 ;𝜃𝑝)

)
𝑞(𝑋) . (29)

Note that Δ𝑓 ,𝑔 (𝑋) is biased due to Jensen’s inequality: taking the
absolute value of an estimator overestimates the absolute value of the
estimator’s expectation. As a result, the above cross-entropy estima-
tor is an upper bound to the true cross entropy between |𝑓 −𝑔 | and 𝑝 .
Crucially, since the upper bound has the same minimum as the cross
entropy (when the flow matches the normalized absolute difference)
minimizing the upper bound does not prevent convergence and
worked sufficiently well in our experiments.

𝛼-coefficient optimization. As given by the constraint in Equa-
tion (23), we only achieve zero variance using 𝛼 = 1. However, this
identity assumes that our parametric control variate and sampling
distribution exactly match their targets, which is unlikely in prac-
tice. In such cases, the 𝛼-coefficient allows for downweighting the

control variate to avoid increased variance due to a poor fit. We
therefore employ a parametric model for 𝛼 , too, and optimize it to
minimize the relative variance of the complete CV estimator:

LV (𝜃𝛼) =
V[⟨𝐹 ⟩]

sg(𝐺 (𝜃𝐺))2 + 𝜖
, (30)

where we use a relative loss for the same reason as in Equation (25):
to be robust with respect to a high dynamic range of values. The
𝛼 coefficient is thus the only component of our model that is opti-
mized with respect to the variance loss in Equation (17); we use the
estimator in Equation (19) to estimate the numerator of LV (𝜃𝛼) for
optimizing 𝜃𝛼 :

⟨LV (𝜃𝛼)⟩ =
⟨V[⟨𝐹 ⟩]⟩

sg(𝐺 (𝜃𝐺))2 + 𝜖
, (31)

In Figure 6, we demonstrate the additional robustness of using our
composite loss instead of the theoretically optimal variance loss.
We note that the variance loss result, as well as the intermediate
ablation results, are generally very unstable; we had to run many
optimization runs to produce these results. In contrast, the final
composite loss consistently produces useful results.

ACM Trans. Graph., Vol. 39, No. 6, Article 243. Publication date: December 2020.

243:10 • Müller et al.

CV Integral𝐺 (x, 𝜔 ;𝜃𝐺) Coefficient 𝛼 (x, 𝜔 ;𝜃𝛼) Selection Probability 𝑐 (x, 𝜔 ;𝜃𝑐) CV 𝑔 (x, 𝜔,𝜔i;𝜃𝑔) PDF 𝑝 (x, 𝜔,𝜔i;𝜃𝑝)

Ba
th

ro
om

Be
dr

oo
m

Fig. 7. All learned components of our method when applied to light transport simulation: we visualize the learned CV integral𝐺 (x, 𝜔 ;𝜃𝐺) , the coefficient
𝛼 (x, 𝜔 ;𝜃𝛼) , and selection probability 𝑐 (x, 𝜔 ;𝜃𝑐) at the primary vertices (first non-delta interaction) of each pixel. Furthermore, we show the directionally
resolved learned CV 𝑔 (x, 𝜔,𝜔i;𝜃𝑔) and PDF 𝑝 (x, 𝜔,𝜔i;𝜃𝑝) at the spatial location marked in red. The CV integral approximates the scattered light field
𝐿s (x, 𝜔) remarkably well. In places where either the CV integral or the shape is inaccurate, the learned alpha-coefficient weighs down the contribution of the
CV to our unbiased estimator. Lastly, the learned selection probability blends between BSDF sampling (red) and residual neural importance sampling (green)
such that variance is minimized. Note how glossy surfaces tend to favor BSDF sampling, whereas rougher surfaces often favor residual NIS.

6 APPLICATION TO LIGHT TRANSPORT
With trainable control variates at hand, we are ready to demonstrate
their benefits in light-transport simulation. Physically based image
synthesis is concerned with estimating the scattered radiance

𝐿s (x, 𝜔) =
∫
𝑆2

𝑓s (x, 𝜔, 𝜔i)𝐿i (x, 𝜔i) |cos𝛾 | d𝜔i (32)

that leaves surface point x in direction 𝜔 [Pharr et al. 2016], where
𝑓s is the bidirectional scattering distribution function, 𝐿i is radiance
arriving at x from direction 𝜔i, and 𝛾 is the foreshortening angle.

The correspondence to Equation (9) is established as follows: the
scattered radiance 𝐿s (x, 𝜔) corresponds to the parametric integral
𝐹 (𝑦), where 𝑦 ≡ (x, 𝜔), which we refer to as the query location. The
integration domain and the integration variable are the unit sphere
and the direction of incidence, i.e. D ≡ 𝑆2 and 𝑥 ≡ 𝜔i, respectively.

Our goal is to reduce estimation variance by leveraging the para-
metric CV from Section 3. Its integral component serves as an ap-
proximation of the scattered radiance, i.e. 𝐺 (x, 𝜔 ;𝜃𝐺) ≈ 𝐿s (x, 𝜔),
while its shape component 𝑔(x, 𝜔, 𝜔i;𝜃𝑔) approximates the nor-
malized integrand. In analogy to Equation (12), a one-sample MC
estimator of Equation (32) with the trainable CV from Section 3
reads:

⟨𝐿s (x, 𝜔)⟩ = 𝐺 (x, 𝜔 ;𝜃𝐺)

+
𝑓s (x, 𝜔,Ω)𝐿i (x,Ω) |cos𝛾 | − 𝑔(x, 𝜔,Ω;𝜃𝑔)

𝑝 (Ω |x, 𝜔 ;𝜃𝑝)
. (33)

We made one small modification to 𝑝 (Ω |x, 𝜔 ;𝜃𝑝): instead of mixing
NIS with uniform sampling as proposed in Section 4, we mix NIS
with BSDF sampling 𝑝 𝑓s , which in rendering in many cases is a
better baseline than uniform sampling. This results in the following
PDF:

𝑝 (Ω |x, 𝜔 ;𝜃𝑝) =
(
1 − 𝑐 (x, 𝜔 ;𝜃𝑐)

)
𝑝 𝑓s (Ω |x, 𝜔)

+ 𝑐 (x, 𝜔 ;𝜃𝑐) 𝑝NIS (Ω |x, 𝜔 ;𝜃NIS) . (34)

Figure 7 visualizes how each component of our trainable CVs fits
into the light-transport integral equation.

6.1 Path Termination
The recursive estimation of radiance terminates when the path
escapes the scene or hits a black-body radiator that does not scatter
light. Since the integral component of the CV approximates the
scattered light field well in many cases, we considered skipping the
evaluation of the correction term, thereby truncating the path and
producing a biased radiance estimate. Figure 8 (column CV Integral)
visualizes the neural scattered light field𝐺 at non-specular surfaces
that are directly visible from the camera or seen through specular
interactions. Compared to the reference (right-most column) the
approximation error of the neural light field, which manifests as low-
frequency variations and blurry appearance, is not suitable for direct
visualization. However, deferring the approximation error to higher-
order bounces (such as in final gathering for photon mapping) may
strike a good balance between visual quality and computation cost
(“Biased NCV (Ours)” column in Figure 8).

We utilize a simple criterion for ignoring the correction term.
The criterion measures the stochastic area-spread of path vertices,
which [Bekaert et al. 2003] proposed to use as the photon-mapping
filter radius. Once the area spread becomes sufficiently large, we
terminate the path and approximate 𝐿s (x, 𝜔) by 𝐺 (x, 𝜔 ;𝜃𝐺).

Sampling of direction 𝜔 using 𝑝 (Ω |x, 𝜔) at path vertex x induces
the area spread of

𝑎(x′, x) = 1
𝑝 (x′ |x, 𝜔) =

∥x − x′∥2

𝑝 (Ω |x, 𝜔) | cos𝛾 ′ | (35)

around the next path vertex x′, where 𝛾 ′ is the incidence angle at x′.
The cumulative area spread at the𝑛-th path vertex is the convolution
of the spreads induced at all previous vertices. Assuming isotropic
Gaussian spreads with variance

√
𝑎(x′, x) and parallel surfaces, this

ACM Trans. Graph., Vol. 39, No. 6, Article 243. Publication date: December 2020.

Neural Control Variates • 243:11

convolution can be approximated as:

𝑎(x1, . . . , x𝑛) =
(
𝑛∑
𝑖=2

√
𝑎(x𝑖 , x𝑖−1)

)2

. (36)

x

x′

𝛾 ′
𝑎(x′, x)

We compare this cumulative area
spread to the pixel footprint
projected onto the primary ver-
tex x1. If the projected pixel
footprint is more than 10 000×
smaller than the path’s cumu-
lative area spread—loosely cor-
responding to a 100-pixel-wide
image-space filter—we terminate the path into 𝐺 (x, 𝜔i). Otherwise,
we keep applying our unbiased control variates and recursively
evaluate the heuristic at the next path vertex.
The heuristic path termination shortens the mean path length

and removes a significant amount of noise at the cost of a small
amount of visible bias; see Figure 1 and Section 7.
Our heuristic area spread is a simplified version of path differ-

entials and could be made more accurate by taking into account
anisotropy and additional dimensions of variation, for instance via
covariance tracing [Belcour et al. 2013]. In our experiments, our
heuristic worked sufficiently fine and hence we leave this extension
to future work. Stochastic path termination via Russian roulette is
discussed in Section 8.

6.2 Implementation
We implemented our neural control variates as well as neural impor-
tance sampling within Tensorflow [Abadi et al. 2015]. The rendering
algorithm is implemented in the Mitsuba renderer [Jakob 2010], in-
terfacing with Tensorflow to invoke the neural networks.
Rendering and training happen simultaneously, following the

methodology of Neural Importance Sampling [Müller et al. 2019]:
we begin by initializing the trainable parameters using Xavier initial-
ization [Glorot and Bengio 2010] and then optimize our composite
loss (Equation (24)) using Adam [Kingma and Ba 2014]. We use
the CPU to perform light-transport computations and two GPUs
to perform the neural-network-related computations. One GPU is
responsible solely for training whereas the other is responsible for
utilizing the current trained model to reduce variance as per Equa-
tion (33). Training and variance reduction mutually benefit each
other—the models are synced every second—making our algorithm
a variant of reinforcement learning.

Mitsuba communicates with Tensorflow in batches of 65 536 sam-
ples, where every path vertex is a single sample. At each path vertex
(x, 𝜔), we initially proceed identically to NIS [Müller et al. 2019]:
the renderer first queries the MIS selection probabilities 𝑐 (x, 𝜔 ;𝜃 𝑓s)
and 𝑐 (x, 𝜔 ;𝜃NIS). Next, according to the selection probabilities, the
renderer probabilistically selects either BSDF sampling or NIS. If
BSDF sampling is selected, the algorithm queries the NIS PDF for
the sampled direction 𝜔i. If NIS is selected, the algorithm queries a
sample of 𝜔i via NIS. The renderer continues by querying the CV
integral 𝐺 (x, 𝜔), the CV shape 𝑔(x, 𝜔, 𝜔i), as well as 𝛼 (x, 𝜔), and
applies them according to Equation (33). After a light path has been
completed, the reflected radiance at each vertex, along with the

Table 1. Parameters 𝑦 that are fed to our parametric models alongwith their
encoding and dimensionality. We apply one-blob (ob) encoding [Müller et al.
2019] to all parameters except for the reflectances and the transmittance.

Parameter Symbol Encoding

Scattered dir. 𝜔 ∈ 𝑆2 ob(𝜔/2 + 0.5) ∈ R3×32

Position x ∈ R3 ob(x) ∈ R3×32

Path length 𝑘 ∈ N ob(𝑘/𝑘max) ∈ R32

Surface normal ®𝑛(x) ∈ 𝑆2 ob(®𝑛(x)/2 + 0.5) ∈ R3×32

Surface roughness 𝑟 (x, 𝜔) ∈ R ob
(
1 − 𝑒−𝑟 (x,𝜔)

)
∈ R32

Diffuse reflectance 𝑓dr (x, 𝜔) ∈ R3 𝑓dr (x, 𝜔) ∈ R3

Specular reflectance 𝑓sr (x, 𝜔) ∈ R3 𝑓sr (x, 𝜔) ∈ R3

Transmittance 𝑓t (x, 𝜔) ∈ R3 𝑓t (x, 𝜔) ∈ R3

vertex’s metadata, is put into a ring buffer that keeps track of the
past 1 048 576 vertices. The training GPU continuously assembles
training batches by picking random samples from the ring buffer to
minimize correlations within each batch.

Specular BSDFs. BSDFs with Dirac-delta components (henceforth
referred to as “specular”) typically require special treatment because
they are not square integrable. Inserting specular components into
our equations results in the following behavior that needs to be ex-
plicitly implemented. There are two cases: (i) the BSDF has specular
and non-specular components. In this case, the selection probability
𝑐 is used in the standard way to select either BSDF sampling or NIS.
If BSDF sampling is selected and one of its specular components
is sampled, then the NIS PDF and our parametric control variate
are treated as zero. Otherwise (i.e. when either NIS or a smooth
BSDF component is sampled), we apply the neural control variate,
but with 𝑔 multiplied by the total probability of sampling NIS or a
smooth BSDF component; 𝐺 should not be multiplied by this num-
ber. (ii) the BSDF has only specular components. In this case, regular
path tracing is used (without the influence of any of our parametric
models).

Iterative rendering. We apply the same iterative rendering scheme
as Müller et al. [2019]: we render 𝑀 = ⌊log2 (𝑁 + 1)⌋ images with
power-of-two sample counts 2𝑖 ; 𝑖 ∈ {0, . . . , 𝑀}, except for the last
iteration which may have fewer samples due to running out of ren-
der time. To obtain the final image, we average all images, weighted
by the reciprocal of a robust numerical estimate of their mean pixel
variance [Müller 2019] in order to limit the impact of high-variance
initial samples.

Parameter augmentation for neural networks. As observed by Ren
et al. [2013], the approximation power of a parametric model to
learn the light field as a function of (x, 𝜔) may be dramatically
improved when additional quantities are provided as input. Table 1
lists all parameters that we feed to our parametric models in addition
to the query location and direction (x, 𝜔): the surface normal, the
surface roughness, the diffuse and specular reflectance, and the
transmittance. Directions are parameterized in a global coordinate
frame as done by Müller et al. [2017].

ACM Trans. Graph., Vol. 39, No. 6, Article 243. Publication date: December 2020.

243:12 • Müller et al.

We also include the path length 𝑘 when the maximum path length
is capped to some finite number 𝑘max; in all our results we use
𝑘max = 10. In this case, the networks must learn progressively less
indirect illumination as 𝑘 approaches 𝑘max.
All quantities are normalized such that they fall within the unit

hypercube of their respective dimensionality. Those quantities that
have a highly non-linear relationship with the light field (all but
the reflectances and the transmittance) are additionally one-blob
encoded [Müller et al. 2019], denoted by ob(𝑥).

Network and flow architecture. For both normalizing flows, i.e. the
multi-channel flow for the CV shape and the standard flow for NIS,
we use the piecewise-quadratic warp proposed by [Müller et al. 2019]
with 64 bins and a uniform latent distribution 𝑝L (𝑥 ′) ≡ 𝑝U (𝑥 ′).
Both flows use 𝐿 = 2 warps to make the total number of warps,
neural networks, and trainable parameters comparable to standalone
NIS [Müller et al. 2019], which uses a single flow with 𝐿 = 4 warps.
All neural networks—i.e. those that parameterize our warps as

well as the one that predicts 𝐺 , 𝛼 , and 𝑐—use the same architecture:
a fully connected residual network [He et al. 2016] with 2 residual
blocks that each have 2 layers with 256 neurons. We also experi-
mented with other architectures, such as multi-layer perceptrons
(MLPs) and U-nets (as proposed for NIS), and remark that architec-
tural differences had only small, almost immeasurable impact on
the results in our tests.
Lastly, matrix multiplications are computed at half precision in

order to take advantage of dedicated hardware.

Optimization. We optimize the neural networks during rendering
in a reinforcement-learning fashion: the vertices of traced paths
are used to optimize the networks by minimizing Equation (24),
while simultaneously the current neural networks are used to drive
variance reduction via Equation (33). The networks reduce variance
of their own training data and that of the final image.

Weminimize Equation (24) usingAdam [Kingma and Ba 2014] and
use a learning rate of 1 × 10−3, which decays in two steps: (i)

√
10 ×

10−4 after 25% of the rendering process and (ii) 1 × 10−4 after 50% of
the rendering process. This learning-rate decay addresses a problem
pointed out by Müller et al. [2019], where learned distributions
exhibited prolonged fluctuations in the later stages of training.

Lastly, we note that we do not use batch normalization [Ioffe and
Szegedy 2015], because it detrimentally affected computational and
qualitative performance.

7 RESULTS AND ANALYSIS
All results were produced on an NVIDIA DGX-1, using one Intel
Xeon E5–2698 v4 CPU (20 cores; 40 threads) and two Tesla V100
GPUs (comparable to two RTX 2080Ti). To gauge the practical use-
fulness of our technique, we compare render quality at equal time,
but we recognize that the performance depends strongly on the
particular hardware setup. Therefore, we also report samples per
pixel in Table 2 for completeness.
We quantify rendering error using the “mean absolute percent-

age error” (MAPE), which strikes a good balance between being
perceptually accurate and correlating with Monte Carlo standard
deviation. MAPE is defined as 1

𝑁

∑𝑁
𝑖=1 |𝑣𝑖 − 𝑣𝑖 |/(𝑣𝑖 + 𝜖), where 𝑣𝑖 is

the value of the 𝑖-th pixel in the reference image, 𝑣𝑖 is the value of
the 𝑖-th rendered pixel, and 𝜖 = 0.01 prevents near-black pixels from
dominating the metric. A rough estimate of Monte Carlo efficiency
can be obtained by the reciprocal square root of MAPE—i.e. a 2×
smaller MAPE loosely corresponds to 4× faster rendering.
Table 2 and Figure 8 summarize our main results. We report

MAPE and samples per pixel after 2 hours of rendering at a reso-
lution of 1920x1080. We compare unidirectional path tracing (PT),
practical path guiding with recent improvements (PPG) [Müller
2019; Müller et al. 2017], neural importance sampling [Müller et al.
2019] without (NIS) and with (NIS++) our additionally proposed
learning-rate decay and approximately normalized cross-entropy
loss (Section 5.2, Equation (29)), and our neural control variates
(NCV). Russian roulette is not used, which we elaborate on in Sec-
tion 8. Among these unbiased techniques, our NCVs usually yield
the lowest error.

Comparison to NIS and NIS++. To rule out the possibility of NCVs
outperforming NIS simply because it uses additional neural net-
works for the CV components, we use only 𝐿 = 2 warps for impor-
tance sampling the residual integral (NIS uses 𝐿 = 4 warps).
Furthermore, we use a single neural network to simultaneously

predict the coefficient 𝛼 , the CV integral𝐺 , and the selection proba-
bility 𝑐 . Our NCVs therefore use the same total number of neural
networks (five), all with the same architecture, and the same total
number of piecewise-quadratic warps (four) as NIS; therefore the
number of trainable parameters is the same and the performance
is comparable. Differences in the number of per-pixel samples are
largely due to differences in importance sampling and therefore
different mean path lengths.

Path termination using NCV. We also show the results of applying
our path termination heuristic (Section 6.1) as a by-product of NCVs.
The technique dramatically outperforms the unbiased algorithm
at the cost of minimally visible artifacts (cf. the “NCV + heuristic”
column in Figure 8). Please refer to the supplementary material with
an interactive image viewer for full-resolution images.

Quality of approximations. Table 2 and Figure 8 include a column
listing the MAPE obtained when evaluating the learned CV integral
at the first non-specular path vertex. Even though the CV integral
exhibits visible bias, its relatively low MAPE is an indicator of the
excellent approximation power of neural networks.
To further explore the limits of our parametric models, we vi-

sualize them from novel viewpoints in Figure 10. For each scene in
the figure, the neural networks were trained while rendering the
corresponding entries in Table 2. In the Bedroom and Bathroom
scenes, the specular highlights on the floor and the furniture are
at the correct positions. This observation supports the claim that
the neural networks learn the actual 5D light field, as opposed to a
mere screen-space approximation of it. On the other hand, in the
Spaceship scene, the highly glossy transport is not accurately cap-
tured from the novel viewpoint, despite the good performance of
our NCVs in terms of MAPE. We show animated camera trajectories
in the supplementary video, which also features theNecklace scene
as another failure case of incorrectly learned glossy light transport.

ACM Trans. Graph., Vol. 39, No. 6, Article 243. Publication date: December 2020.

Neural Control Variates • 243:13

Unbiased Biased

PT PPG NIS++ NCV NCV + heuristic CV Integral Reference

Ba
th

ro
om

MAPE: 0.112 0.073 0.037 0.030 0.017 0.023

Be
dr

oo
m

MAPE: 0.064 0.035 0.031 0.026 0.020 0.035

Bo
ok

sh
el
f

MAPE: 0.658 0.045 0.047 0.030 0.025 0.080

Bo
tt

le

MAPE: 0.848 0.088 0.062 0.056 0.046 0.163

Sp
ec
tr

al
Bo

x

MAPE: 0.030 0.014 0.015 0.009 0.008 0.019

Ve
ac

h
D
oo

r

MAPE: 0.532 0.084 0.060 0.036 0.024 0.034

Fig. 8. Neural control variates (NCV) compared to our improved variant (NIS++) of neural importance sampling [Müller et al. 2019], practical path guiding
with recent improvements (PPG) [Müller 2019], and uni-directional path tracing (PT). All images have a resolution of 1920 × 1080 pixels and were rendered
in 2 hours. Unbiased NCV consistently achieves a moderate MAPE improvement. The biggest benefit is seen in scenes with smooth, indirect illumination
(Bathroom, Spectral Box, and Veach Door). Approximating the tail contribution of light-transport paths by the learned CV integral driven by our heuristic
described in Section 6.1 (“NCV + heuristic” column) allows for additional improvements, most noticeable in the Bathroom and Veach Door scenes. This
variant of NCV reduces noise significantly while introducing only little visible bias, unlike naïvely evaluating the CV integral at the first non-specular path
vertex (“CV Integral” column).

ACM Trans. Graph., Vol. 39, No. 6, Article 243. Publication date: December 2020.

243:14 • Müller et al.

Table 2. We report equal-time mean absolute percentage error (MAPE) of several machine-learning-based variance reduction techniques on 18 test scenes. Bold
entries indicate lowest error among unbiased/biased techniques. All images have a resolution of 1920 × 1080 pixels and were rendered in 2 hours. The achieved
samples per pixel are written next to the error numbers. Our unbiased neural control variates (NCV) outperform neural importance sampling (NIS and our
improved NIS++) on almost all scenes, except for the Sponza Atrium. The performance advantage is larger when the illumination is mostly indirect, such as in
interior scenes (e.g. Bathroom, Spectral Box, Bookshelf and Veach Door). Using the integral𝐺 of the neural control variate without correcting for its error
after interactions with rough surfaces (NCV + heuristic) results in a biased image, but in most cases with a significant additional error reduction—this implies
that the variance reduction outweighs the amount of introduced bias. In one scene (Veach Lamp), lowest MAPE is achieved by using uncorrected𝐺 already at
the first camera vertex (CV Integral), but the produced image suffers from visually displeasing artifacts (see Figure 8 and the supplementary material).

Unbiased Biased

[Müller 2019] [Müller et al. 2019] Ours

PT PPG NIS NIS++ NCV NCV + heuristic CV Integral

Artroom 1.393 1,756spp 0.108 2,998spp 0.079 1,231spp 0.062 1,271spp 0.056 1,188spp 0.044 1,188spp 0.091 1,188spp
Bathroom 0.112 1,785spp 0.073 2,155spp 0.041 736spp 0.037 717spp 0.030 756spp 0.017 756spp 0.023 756spp
Bedroom 0.064 1,727spp 0.035 2,187spp 0.031 719spp 0.031 636spp 0.026 705spp 0.020 705spp 0.035 705spp

Bookshelf 0.658 2,113spp 0.045 2,749spp 0.054 1,012spp 0.047 1,036spp 0.030 1,017spp 0.025 1,017spp 0.080 1,017spp
Bottle 0.848 2,110spp 0.088 3,612spp 0.084 1,322spp 0.062 1,451spp 0.056 1,280spp 0.046 1,280spp 0.163 1,280spp

Cornell Box 0.035 8,614spp 0.009 3,873spp 0.009 906spp 0.009 908spp 0.005 1,290spp 0.006 1,290spp 0.020 1,290spp
Crytek Sponza 1.340 1,518spp 0.056 2,417spp 0.065 605spp 0.060 533spp 0.051 711spp 0.048 711spp 0.234 711spp
Glossy Kitchen 1.450 2,092spp 0.071 2,391spp 0.075 988spp 0.049 978spp 0.045 875spp 0.031 875spp 0.114 875spp

Country Kitchen 0.696 2,070spp 0.068 3,013spp 0.073 1,039spp 0.066 1,026spp 0.059 1,014spp 0.046 1,014spp 0.067 1,014spp
Necklace 0.28910,280spp 0.057 9,449spp 0.038 2,958spp 0.033 2,541spp 0.031 2,726spp 0.030 2,726spp 0.159 2,726spp

Swimming Pool 0.451 4,271spp 0.035 5,771spp 0.040 1,973spp 0.034 1,956spp 0.031 1,971spp 0.028 1,971spp 0.076 1,971spp
Spaceship 0.017 6,489spp 0.009 7,529spp 0.009 2,775spp 0.008 2,707spp 0.006 2,585spp 0.007 2,585spp 0.027 2,585spp

Spectral Box 0.030 9,563spp 0.014 4,348spp 0.017 958spp 0.015 946spp 0.009 1,373spp 0.008 1,373spp 0.019 1,373spp
Sponza Atrium 1.614 1,904spp 0.060 3,007spp 0.049 599spp 0.040 550spp 0.042 738spp 0.022 738spp 0.066 738spp

Staircase 0.137 1,458spp 0.029 2,553spp 0.023 1,288spp 0.022 1,156spp 0.019 943spp 0.015 943spp 0.036 943spp
Torus 0.21412,108spp 0.021 9,470spp 0.020 3,714spp 0.018 2,955spp 0.015 3,497spp 0.014 3,497spp 0.014 3,497spp

Veach Door 0.532 3,749spp 0.084 2,773spp 0.065 648spp 0.060 603spp 0.036 830spp 0.024 830spp 0.034 830spp
Veach Lamp 0.532 4,079spp 0.069 2,204spp 0.077 582spp 0.068 537spp 0.039 723spp 0.026 723spp 0.022 723spp

.01

.1

1

M
AP

E

Art Room Bathroom Bedroom Bookshelf Bottle Cornell Box Crytek Sponza Glossy Kitchen Country Kitchen

60 3600 7200
seconds

.01

.1

1

M
AP

E

Necklace

60 3600 7200
seconds

Swimming Pool

60 3600 7200
seconds

Spaceship

60 3600 7200
seconds

Spectral Box

60 3600 7200
seconds

Sponza Atrium

60 3600 7200
seconds

Staircase

60 3600 7200
seconds

Torus

60 3600 7200
seconds

Veach Door

60 3600 7200
seconds

Veach Lamp

PPG NIS++ NCV CV Integral

Fig. 9. MAPE convergence plots of practical path guiding (PPG) [Müller et al. 2017], our improved variant (NIS++) of neural importance sampling [Müller
et al. 2019], and our neural control variates (NCV). The dashed red line corresponds to using the uncorrected CV integral at the first non-specular vertex.
The dashed green line corresponds to the biased variant of our algorithm, where the uncorrected CV integral is used at a vertex determined by the path
termination heuristic. It consistently outperforms all other techniques, except for the Torus and the Veach Lamp, where using the CV integral at the first
non-specular vertex performs best.

Finally, we demonstrate the spatial adaptivity of our model in
Figure 11, where we show the learned CV and PDF at several loca-
tions in space. Combined with the observations from Figure 10, the
spatial adaptivity confirms that the learned CV and PDF capture
the full 7-dimensional integrand of the rendering equation with a

reasonable accuracy. We visualize the spatio-directional variations
of the learned distributions in the supplementary video.

Convergence plots. In Figure 9, we plot MAPE vs. time (seconds)
for PPG, NIS++, and our unbiased and biased NCV applications. The
unbiased NCVs (green line) are mostly on-par or slightly better than

ACM Trans. Graph., Vol. 39, No. 6, Article 243. Publication date: December 2020.

Neural Control Variates • 243:15

CV Integral at First Non-Specular Vertex

CV

Ba
th

ro
om

PD
F

CV

Be
dr

oo
m

PD
F

CV

Sp
ac

es
hi
p

PD
F

Fig. 10. Visualization of the learned scattered light field (the CV integral𝐺)
from novel viewpoints in several scenes. The light field was trained while
rendering the corresponding scenes in Figure 8. As the shown camera views
were not used for rendering, they were learned by our neural networks from
secondary path vertices. We synthesize the visualizations by evaluating the
learned light field for each pixel at the first non-specular path vertex (left).
We also show the learned CV (top-right) and sampling PDF (bottom-right)
for the given viewing direction at the marked locations (red).

NIS++, except for the Bookshelf, Cornell Box, Spectral Box,
Veach Door, and Veach Lamp scenes, where the difference is more
pronounced. Adding the heuristic path termination (dashed green
line) significantly improves results in most scenes. Interestingly,
the almost noise-free CV integral, when applied at the first non-
specular path vertex, initially performs much better than the other
techniques in terms of MAPE. However, as soon as a sufficient
number of samples are drawn, the (nearly) unbiased techniques
overtake the significantly biased learned CV integral in most scenes.

8 DISCUSSION AND FUTURE WORK
The use of neural networks makes our technique more computa-
tionally expensive than many non-neural approaches such as PPG
(see Table 2) or Gaussian [Vorba et al. 2014] and von Mises-Fischer
mixture models [Herholz et al. 2019]. It is worth emphasizing that
the different methods in the equal-time comparisons do not all use
the same hardware: PPG utilizes only the CPU while NIS and NCV

additionally leverage two GPUs and require roughly 3×more power.
Nonetheless, even in a light-weight path tracer such as Mitsuba,
the per-sample variance reduction of NCV sometimes outweighs
the added computational cost and higher power consumption. In
cases with high tracing and shading costs—such as in production
rendering—the relative overhead of the networks will be smaller and
a larger efficiency attainable. The practicality of NCV thus strongly
depends on the use case and availability of hardware acceleration.

When the small amount of bias from our path termination heuris-
tic is acceptable, the average path length is reduced by roughly
3× (see Figure 12). Efficiency is therefore improved twofold: lower
sample variance and much cheaper paths. Developing neural esti-
mators that simulate all light bounces with short paths only, e.g.
via Q-learning [Dahm and Keller 2018], may enable synthesizing
high-quality images at interactive and real-time rates in the future.
Leveraging samples across time may also become an enabler.

Separate learning of 𝛼 and 𝐺 . Recall that the control variate is
defined as the product 𝑔 = 𝛼 ·𝐺 · 𝑔. Since both 𝛼 and 𝐺 are scaling
factors of the control variate, it is possible to combine and learn
them as a single variance-minimizing factor𝐺 . The reason for keep-
ing them separate, in our case, is that a variance-minimizing𝐺 may
not necessarily approximate 𝐹 well. However, we need a good ap-
proximation𝐺 ≈ 𝐹 for two reasons: (i) to normalize the relative loss
terms by 𝐺2 and (ii) to approximate the path-tail contribution by 𝐺
when heuristically terminating the paths.

Benefit of unbiased control variates. Our unbiased control variates
improve the efficiency over pure NIS by 6–17× on a toy problem (Fig-
ure 4) whereas they yield a much smaller benefit in light-transport
simulations (Table 2 and Figure 13). We suspect that this discrepancy
arises from the respective difficulties of the integration problems. In
the 2D toy problems, our spectral control variate comes close to a
zero-variance configuration, yielding much greater efficiency than
pure NIS, which is limited to learning a monochromatic function. In
the light-transport simulation, the integrand is higher dimensional
(7D) and less well behaved, leading to a larger distance between
our models and the zero-variance configuration. This hypothesis
is supported by the fact that simpler scenes, such as the Spectral
Box, benefit more from our control variates. Importantly, Figure 13
demonstrates that despite the smaller efficiency improvements in
the light-transport simulation, unbiased spectral control variates
still have a fundamental advantage over monochromatic techniques.
Furthermore, the spectrally learned integral of the control variate
(see Section 6.1) results in an additional significant efficiency gain.

Approximation power. Figure 14 shows that optimizing the model
of the CV integral using 8192spp (all other figures use much fewer
spp) enables accurately approximating intricate, high-frequency
signals. This suggests that our method is not limited by the ap-
proximation power of the employed neural networks, but by the
rate of learning. We confirmed this experimentally by increasing
the number of sub-flows and by making the neural network bigger.
Both resulted in only minor variance reduction—much less than the
added computational overhead. For future work, it is therefore of
particular interest to investigate means of increasing the training
efficiency of the model.

ACM Trans. Graph., Vol. 39, No. 6, Article 243. Publication date: December 2020.

243:16 • Müller et al.

Bedroom Bathroom Spectral Box

CV PDF CV PDF CV PDF CV PDF CV PDF CV PDF

Fig. 11. Visualization of the learned control variates and importance sampling distributions in several scenes. We show CVs (left) and sampling PDFs (right)
at two locations (red and orange) per scene. The CVs and PDFs are parametrized in world space via cylindrical coordinates as learned by our neural networks.

NCV + heuristic 1st vertex 2nd vertex 3rd vertex

Re
nd

er

Ba
th

ro
om

Pa
th

le
ng

th

MAPE: 0.030 0.017 0.023 0.017 0.020

Re
nd

er

Co
un

tr
y
Ki
tc
he

n

Pa
th

le
ng

th

MAPE: 0.061 0.049 0.070 0.051 0.055

Fig. 12. Different path termination strategies. We compare our unbiased NCVs (no early termination) to our heuristic (Section 6.1) and to terminating at the
1st, 2nd, or 3rd non-specular vertex. The top row shows the resulting images and the bottom row shows the average path length in each pixel (brighter means
longer). The heuristic consistently produces less noise than always terminating at the 3rd vertex while simultaneously avoiding visible artifacts in creases and
on rough surfaces (as seen when terminating always at the 1st or 2nd vertex).

Monochromatic NCV Spectral NCV

NIS++ 1 flow 3 flows 1 multi-channel flow Reference

Sp
ec
tr

al
Bo

x

MAPE: 0.026 0.023 0.015 0.016
Elapsed (min): 72.493 49.780 62.899 49.436

Fig. 13. Comparison of monochromatic and spectral control variates at an equal sampling rate (512 spp). On scenes where the neural control variate is most
useful, such as the Spectral Box shown here, the 3-flows spectral approach can offer a significant improvement over the monochromatic one, but at a higher
computational cost. Our multi-channel flow offers a good trade-off between the two approaches. The higher rendering time of NIS is due to the fact that it
tends to yield longer paths on the average than the CV approaches in this scene. The impact could be smaller or even reversed in other scenes.

ACM Trans. Graph., Vol. 39, No. 6, Article 243. Publication date: December 2020.

Neural Control Variates • 243:17

8 spp 32 spp 128 spp 512 spp 2048 spp 8192 spp Reference

Sw
im
mi
ng

Po
ol

MAPE: 0.375 0.192 0.139 0.108 0.068 0.042

Fig. 14. CV integral training convergence. Training a dedicated CV integral network for longer than 2 hours enables more accurate approximations. This
suggests that our method is not limited by the approximation power of the neural networks, but by the speed of their training.

Animated sequences. Figure 10 demonstrates that the neural net-
works learn a reasonable approximation of the full light field—not
just the slice visible by the camera. When rendering an animation,
it would thus be reasonable to bootstrap the training of the next
frame by initializing the networks using the weights resulting from
rendering the previous frame (as opposed to randomly).

8.1 Extensions
Handling of signed integrands. In Section 3, we point out that our

parametric neural control variates are non-negative by construc-
tion. Inspired by Owen and Zhou’s [2000] positivisation trick for
importance sampling, we show that one can construct an arbitrary
signed control variate from two such non-negative control variates.

Let 𝑓 (𝑥) be a signed integrand. Then the first non-negative con-
trol variate 𝑔+ (𝑥) shall approximate the positive portion of 𝑓 (𝑥) and
the second non-negative control variate 𝑔− (𝑥) shall approximate
the negative portion of 𝑓 (𝑥). Formally:

𝑔+ (𝑥) ≈ max(𝑓 (𝑥), 0) (37)
𝑔− (𝑥) ≈ −min(𝑓 (𝑥), 0) . (38)

The signed control variate𝑔(𝑥) := 𝑔+ (𝑥)−𝑔− (𝑥) is defined as the dif-
ference of the two control variates. It follows that𝑔(𝑥) approximates
𝑓 (𝑥) as desired:

𝑔(𝑥) ≡ 𝑔+ (𝑥) − 𝑔− (𝑥) ≈ max(𝑓 (𝑥), 0) + min(𝑓 (𝑥), 0) = 𝑓 (𝑥) .
(39)

Adjoint Russian roulette and splitting. Many path tracers utilize
Russian roulette to terminate paths and thereby probabilistically
avoid evaluating low-contribution samples. Since the neural light
field approximation at the primary vertex already contains the ma-
jority of the contribution to the pixel value with only little error
to be corrected by the remaining path tail, Russian roulette should
be aggressively truncating the paths, leading to much greater effi-
ciency. Unfortunately, in our experiments, Russian roulette instead
worsened the efficiency of our approach. We suspect that this is
because it does not take the variance of the error correction into ac-
count, which is a crucial component of efficiency-optimized Russian
roulette [Veach 1997]. Orthogonally, it is possible to improve the ac-
curacy of Russian roulette by taking the adjoint into account [Vorba
and Křivánek 2016], however it is difficult to obtain a good esti-
mate of the adjoint. This is because our renderer is not estimating
radiance, but the difference to our CV. The appropriate adjoint in
this case is the difference integral, which is not readily available.

We leave the investigation of efficiency-optimized Russian roulette
within our parametric control variates as future work.

Generalization to volume rendering. Even though we only demon-
strated results for surface rendering, we believe our algorithm gen-
eralizes to volumetric rendering. First, for estimating in-scattered
radiance at a point, the only part of our algorithm that needs to
change is the network input listed in Table 1. It is straightforward
to add relevant properties of volumetric points to the network input.
Then, for estimating radiance along a line through a volume, one
may either use an additional 1-D instance of our model, or one
may use a form of guided distance sampling [Herholz et al. 2019],
complemented by the neural light field 𝐺 to approximate the true
in-scattered radiance.

9 CONCLUSION
We present neural control variates, a model for reducing variance
in parametric Monte Carlo integration. The main challenge that we
tackle is designing a model with sufficient approximation power that
is efficient to evaluate. We achieve this by employing normalizing
flows to model the shape of the control variate and a second neural
network to infer its integral. To this end, prior works on normalizing
flows are extended by developing the multi-channel normalizing
flows, which improve the performance of multi-channel integration
such as spectral rendering. To further reduce the integration error,
we utilize neural importance sampling for estimating the correction
term. We describe recipes for jointly optimizing the NCVs and the
residual NIS using (i) a theoretically optimal variance loss, and (ii)
an empirical composite loss for robust optimization.
We analyzed the performance of neural control variates in the

setting of photorealistic image synthesis. The NCVs yield notable
improvements and perform better, on the average, than state-of-the-
art competitors in both equal-time and equal-sample-count settings.
While our unbiased application of NCVs only provides a small effi-
ciency boost, it enables a biased algorithm that improves efficiency
significantly. We expect our performance to grow further as the
considerable cost of neural networks decreases with the advance of
models and computer hardware. While we demonstrate the utility
of our approach for path tracing, we think it will extend well to
many rendering algorithms that employ Monte Carlo integration,
and we expect it to be applicable beyond light-transport algorithms
due to its fundamental nature.

Convergence of data-driven and physically based simulation. Our
work connects neural approximation and unbiased simulation.While

ACM Trans. Graph., Vol. 39, No. 6, Article 243. Publication date: December 2020.

243:18 • Müller et al.

data-driven approaches can obtain realistic results, correcting their
errors is tedious. Physically based integrators, on the other hand,
provide accurate solutions, albeit at excessive cost. We show that the
mechanism of control variates allows for combining a data-driven,
high-quality neural approximation with an accurate, physically-
based integrator, which can be used on demand to merely correct
the errors. The challenge for such future developments will be defin-
ing 𝐺 and 𝑔 such that 𝐺 =

∫
𝑔(𝑥) d𝑥 is preserved while both are

efficient to evaluate.

ACKNOWLEDGMENTS
We thank Markus Kettunen and Nikolaus Binder for valuable feed-
back. We also thank the following people for providing scenes and
models that appear in our figures: Benedikt Bitterli [2016], Frank
Meinl (Crytek Sponza), Jay-Artist (Country Kitchen), Johannes
Hanika (Necklace), Marko Dabrović (Sponza Atrium), Miika Ait-
tala, Samuli Laine, and Jaakko Lehtinen (VeachDoor), Olesya Jakob
(Torus), Ondřej Karlík (Swimming Pool), SlykDrako (Bedroom),
thecali (Spaceship), Tiziano Portenier (Bathroom, Bookshelf), and
Wig42 (Staircase).

A VARIANCE OF THE CONTROL VARIATE ESTIMATOR
In order to derive the variance of the control variate estimator

⟨𝐹 ⟩ = 𝐺 (𝜃
�̂�
) + 𝑓 (𝑋,𝑍)

𝑝 (𝑋,𝑍 ;𝜃𝑝)
−

𝑔(𝑋 ;𝜃𝑔)
𝑝 (𝑋 ;𝜃𝑝)

, (40)

we recall that V[𝑋 + 𝑐] = V[𝑋] for any constant 𝑐 . Hence, sub-
tracting the constant 𝐺 (𝜃

�̂�
) on both sides and proceeding with the

definition of variance, we have:

V[⟨𝐹 ⟩] = V
[
⟨𝐹 ⟩ −𝐺 (𝜃

�̂�
)
]

= E
[(
⟨𝐹 ⟩ −𝐺 (𝜃

�̂�
)
)2]︸ ︷︷ ︸

=:𝑈

−E
[
⟨𝐹 ⟩ −𝐺 (𝜃

�̂�
)
]2︸ ︷︷ ︸

=:𝑉

. (41)

Then the expectation of the square results in the following double
integral:

E

[(
⟨𝐹 ⟩ −𝐺 (𝜃

�̂�
)
)2

]
= E

[(
𝑓 (𝑋,𝑍)

𝑝 (𝑋,𝑍 ;𝜃𝑝)
−

𝑔(𝑋 ;𝜃𝑔)
𝑝 (𝑋 ;𝜃𝑝)

)2]
=

∫
D

∫
P

(
𝑓 (𝑥, 𝑧)

𝑝 (𝑥, 𝑧;𝜃𝑝)
−

𝑔(𝑥 ;𝜃𝑔)
𝑝 (𝑥 ;𝜃𝑝)

)2
𝑝 (𝑥, 𝑧;𝜃𝑝) d𝑧 d𝑥

=

∫
D

∫
P

(
𝑓 (𝑥, 𝑧)

𝑝 (𝑥 ;𝜃𝑝)𝑝 (𝑧 |𝑥)
−

𝑔(𝑥 ;𝜃𝑔)
𝑝 (𝑥 ;𝜃𝑝)

)2
𝑝 (𝑥 ;𝜃𝑝)𝑝 (𝑧 |𝑥) d𝑧 d𝑥

=

∫
D

∫
P

(
𝑓 (𝑥, 𝑧)
𝑝 (𝑧 |𝑥) − 𝑔(𝑥 ;𝜃𝑔)

)2
𝑝 (𝑧 |𝑥)
𝑝 (𝑥 ;𝜃𝑝)

d𝑧 d𝑥 = 𝑈 . (42)

The squared expectation (second term in Equation (41)) simplifies
to (

E[⟨𝐹 ⟩] −𝐺 (𝜃
�̂�
)
)2

=
(
𝐹 −𝐺 (𝜃

�̂�
)
)2

= 𝑉 . (43)

Putting the𝑈 and 𝑉 terms together yields Equation (17).

REFERENCES
Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Jeffrey Dean, et al. 2015. TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems. http://tensorflow.org/

Roland Assaraf and Michel Caffarel. 1999. Zero-Variance Principle for Monte Carlo
Algorithms. Phys. Rev. Lett. 83 (Dec 1999), 4682–4685. Issue 23. https://doi.org/10.
1103/PhysRevLett.83.4682

Andrea Barth, Christoph Schwab, and Nathaniel Zollinger. 2011. Multi-level Monte
Carlo Finite Element method for elliptic PDEs with Stochastic Coefficients. Numer.
Math. 119, 1 (2011), 123–161. https://doi.org/10.1007/s00211-011-0377-0

Philippe Bekaert, Philipp Slusallek, Ronald Cools, Vlastimil Havran, and Hans-Peter
Seidel. 2003. A custom designed Density Estimation Method for Light Transport.
MPI-I-2003-4-004 (April 2003).

Laurent Belcour, Cyril Soler, Kartic Subr, Nicolas Holzschuch, and Fredo Durand. 2013.
5D Covariance Tracing for Efficient Defocus and Motion Blur. ACM Trans. Graph. 32,
3, Article Article 31 (July 2013), 18 pages. https://doi.org/10.1145/2487228.2487239

Benedikt Bitterli. 2016. Rendering resources. https://benedikt-bitterli.me/resources/.
Mark Broadie and Paul Glasserman. 1998. Risk Management and Analysis, Volume 1:

Measuring and Modelling Financial Risk. Wiley, New York, Chapter Simulation for
option pricing and risk management, 173–208.

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. 2018. Neural
Ordinary Differential Equations. arXiv:1806.07366 (June 2018).

Petrik Clarberg and Tomas Akenine-Möller. 2008. Exploiting Visibility Correlation
in Direct Illumination. Computer Graphics Forum 27, 4 (2008), 1125–1136. https:
//doi.org/10.1111/j.1467-8659.2008.01250.x

Ken Dahm and Alexander Keller. 2018. Learning Light Transport the Reinforced Way.
In Monte Carlo and Quasi-Monte Carlo Methods, Art B. Owen and Peter W. Glynn
(Eds.). Springer International Publishing, 181–195.

Laurent Dinh, David Krueger, and Yoshua Bengio. 2014. NICE: Non-linear Independent
Components Estimation. arXiv:1410.8516 (Oct. 2014).

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. 2016. Density Estimation using
Real NVP. arXiv:1605.08803 (March 2016).

Shaohua Fan, Stephen Chenney, Bo Hu, Kam-Wah Tsui, and Yu-Chi Lai. 2006. Opti-
mizing Control Variate Estimators for Rendering. Computer Graphics Forum 25, 3
(2006), 351–358.

Iliyan Georgiev, Zackary Misso, Toshiya Hachisuka, Derek Nowrouzezahrai, Jaroslav
Křivánek, and Wojciech Jarosz. 2019. Integral formulations of volumetric transmit-
tance. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 38, 6 (Nov.
2019). https://doi.org/10/dffn

Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. 2015. MADE:
Masked Autoencoder for Distribution Estimation. In International Conference on
Machine Learning. 881–889.

Michael B. Giles. 2008. Improved Multilevel Monte Carlo Convergence using the
Milstein Scheme. In Monte Carlo and Quasi-Monte Carlo Methods 2006, Alexander
Keller, Stefan Heinrich, and Harald Niederreiter (Eds.). Springer, Berlin, Heidelberg,
343–358. https://doi.org/10.1007/978-3-540-74496-2_20

Michael B. Giles. 2013. Multilevel Monte Carlo Methods. In Monte Carlo and Quasi-
Monte Carlo Methods 2012, Josef Dick, Y. Frances Kuo, W. Gareth Peters, and H. Ian
Sloan (Eds.). Springer, Berlin, Heidelberg, 83–103. https://doi.org/10.1007/978-3-
642-41095-6_4

Xavier Glorot and Yoshua Bengio. 2010. Understanding the Difficulty of Training Deep
Feedforward Neural Networks. In Proc. 13th International Conference on Artificial
Intelligence and Statistics (May 13–15). JMLR.org, 249–256.

Peter W. Glynn and Roberto Szechtman. 2002. Some New Perspectives on the Method
of Control Variates. In Monte Carlo and Quasi-Monte Carlo Methods 2000, Kai-Tai
Fang, Harald Niederreiter, and Fred J. Hickernell (Eds.). Springer, Berlin, Heidelberg,
27–49. https://doi.org/10.1007/978-3-642-56046-0_3

Will Grathwohl, Dami Choi, YuhuaiWu, Geoff Roeder, and David Duvenaud. 2018. Back-
propagation through the Void: Optimizing control variates for black-box gradient
estimation. International Conference on Learning Representations.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning
for Image Recognition. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Stefan Heinrich. 1998. Monte Carlo Complexity of Global Solution of Integral Equations.
Journal of Complexity 14, 2 (1998), 151 – 175. https://doi.org/10.1006/jcom.1998.0471

Stefan Heinrich. 2000. The Multilevel Method of Dependent Tests. In Advances in
Stochastic Simulation Methods. Birkhäuser Boston, Boston, MA, 47–61. https://doi.
org/10.1007/978-1-4612-1318-5_4

Sebastian Herholz, Yangyang Zhao, Oskar Elek, Derek Nowrouzezahrai, Hendrik P. A.
Lensch, and Jaroslav Křivánek. 2019. Volume Path Guiding Based on Zero-Variance
Random Walk Theory. ACM Trans. Graph. 38, 3, Article 25 (June 2019), 19 pages.
https://doi.org/10.1145/3230635

Pedro Hermosilla, Sebastian Maisch, Tobias Ritschel, and Timo Ropinski. 2019. Deep-
learning the Latent Space of Light Transport. Computer Graphics Forum 38, 4 (2019).

Timothy C. Hesterberg and Barry L. Nelson. 1998. Control Variates for Probability
and Quantile Estimation. Management Science 44, 9 (Sept. 1998), 1295–1312. https:

ACM Trans. Graph., Vol. 39, No. 6, Article 243. Publication date: December 2020.

http://tensorflow.org/
https://doi.org/10.1103/PhysRevLett.83.4682
https://doi.org/10.1103/PhysRevLett.83.4682
https://doi.org/10.1007/s00211-011-0377-0
https://doi.org/10.1145/2487228.2487239
https://doi.org/10.1111/j.1467-8659.2008.01250.x
https://doi.org/10.1111/j.1467-8659.2008.01250.x
https://doi.org/10/dffn
https://doi.org/10.1007/978-3-540-74496-2_20
https://doi.org/10.1007/978-3-642-41095-6_4
https://doi.org/10.1007/978-3-642-41095-6_4
https://doi.org/10.1007/978-3-642-56046-0_3
https://doi.org/10.1006/jcom.1998.0471
https://doi.org/10.1007/978-1-4612-1318-5_4
https://doi.org/10.1007/978-1-4612-1318-5_4
https://doi.org/10.1145/3230635
https://doi.org/10.1287/mnsc.44.9.1295
https://doi.org/10.1287/mnsc.44.9.1295

Neural Control Variates • 243:19

//doi.org/10.1287/mnsc.44.9.1295
Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron C. Courville. 2018.

Neural Autoregressive Flows. arXiv:1804.00779 (April 2018).
Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating Deep

Network Training by Reducing Internal Covariate Shift. arXiv:1502.03167 (2015).
Wenzel Jakob. 2010. Mitsuba Renderer. http://www.mitsuba-renderer.org.
Simon Kallweit, Thomas Müller, Brian McWilliams, Markus Gross, and Jan Novák.

2017. Deep Scattering: Rendering Atmospheric Clouds with Radiance-Predicting
Neural Networks. ACM Trans. Graph. 36, 6, Article 231 (Nov. 2017), 11 pages.
https://doi.org/10.1145/3130800.3130880

Alexander Keller. 2001. Hierarchical Monte Carlo Image Synthesis. Mathematics and
Computers in Simulation 55, 1–3 (2001), 79 – 92. https://doi.org/10.1016/S0378-
4754(00)00248-2 The Second {IMACS} Seminar on Monte Carlo Methods.

Angelien Kemna and Ton Vorst. 1990. A Pricing Method for Options based on Average
Asset Values. Journal of Banking & Finance 14, 1 (1990), 113–129. https://doi.org/
10.1016/0378-4266(90)90039-5

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization.
arXiv:1412.6980 (June 2014).

Diederik P. Kingma and Prafulla Dhariwal. 2018. Glow: Generative Flow with Invertible
1x1 Convolutions. arXiv:1807.03039 (July 2018).

Diederik P. Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max
Welling. 2016. Improved Variational Inference with inverse Autoregressive Flow. In
Advances in Neural Information Processing Systems. 4743–4751.

Ivan Kobyzev, Simon Prince, and Marcus A. Brubaker. 2019. Normalizing Flows: An
Introduction and Review of Current Methods. arXiv:stat.ML/1908.09257

Ivo Kondapaneni, Petr Vevoda, Pascal Grittmann, Tomáš Skřivan, Philipp Slusallek, and
Jaroslav Křivánek. 2019. Optimal Multiple Importance Sampling. ACM Trans. Graph.
38, 4, Article 37 (July 2019), 14 pages. https://doi.org/10.1145/3306346.3323009

Eric P. Lafortune and Yves D. Willems. 1994. The Ambient Term as a Variance Reducing
Technique for Monte Carlo Ray Tracing. In Proc. EGWR. 163–171.

Eric P. Lafortune and Yves D. Willems. 1995. A 5D Tree to Reduce the Variance of
Monte Carlo Ray Tracing. In Proc. EGWR. 11–20.

Stephen S. Lavenberg, Thomas L. Moeller, and Peter D. Welch. 1982. Statistical Results
on Control Variables with Application to Queueing Network Simulation. Operations
Research 30, 1 (1982), 182–202. https://doi.org/10.1287/opre.30.1.182

Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli Laine, Tero Karras, Miika
Aittala, and Timo Aila. 2018. Noise2Noise: Learning Image Restoration without
Clean Data. arXiv:cs.CV/1803.04189

Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel Schwartz, Andreas Lehrmann,
and Yaser Sheikh. 2019. Neural Volumes: Learning Dynamic Renderable Volumes
from Images. ACM Trans. Graph. 38, 4, Article 65 (July 2019), 14 pages. https:
//doi.org/10.1145/3306346.3323020

Maxim Maximov, Laura Leal-Taixe, Mario Fritz, and Tobias Ritschel. 2019. Deep
Appearance Maps. In The IEEE International Conference on Computer Vision (ICCV).

Abhimitra Meka, Christian Häne, Rohit Pandey, Michael Zollhöfer, Sean Fanello, Gra-
ham Fyffe, Adarsh Kowdle, Xueming Yu, Jay Busch, Jason Dourgarian, Peter Denny,
Sofien Bouaziz, Peter Lincoln, MattWhalen, GeoffHarvey, Jonathan Taylor, Shahram
Izadi, Andrea Tagliasacchi, Paul Debevec, Christian Theobalt, Julien Valentin, and
Christoph Rhemann. 2019. Deep Reflectance Fields: High-quality Facial Reflectance
Field Inference from Color Gradient Illumination. ACM Trans. Graph. 38, 4, Article
77 (July 2019), 12 pages. https://doi.org/10.1145/3306346.3323027

Antonietta Mira, Reza Solgi, and Daniele Imparato. 2013. Zero variance Markov chain
Monte Carlo for Bayesian estimators. Statistics and Computing 23 (2013), 653–662.

Thomas Müller. 2019. “Practical Path Guiding” in Production. In ACM SIGGRAPH
Courses: Path Guiding in Production, Chapter 10. ACM, New York, NY, USA, 18:1–
18:77. https://doi.org/10.1145/3305366.3328091

Thomas Müller, Markus Gross, and Jan Novák. 2017. Practical Path Guiding for Efficient
Light-Transport Simulation. Computer Graphics Forum 36, 4 (June 2017), 91–100.
https://doi.org/10.1111/cgf.13227

Thomas Müller, Brian Mcwilliams, Fabrice Rousselle, Markus Gross, and Jan Novák.
2019. Neural Importance Sampling. ACM Trans. Graph. 38, 5, Article 145 (Oct. 2019),
19 pages. https://doi.org/10.1145/3341156

Oliver Nalbach, Elena Arabadzhiyska, Dushyant Mehta, Hans-Peter Seidel, and Tobias
Ritschel. 2017. Deep Shading: Convolutional Neural Networks for Screen-Space
Shading. 36, 4 (2017).

Barry L. Nelson. 1990. Control Variate Remedies. Operations Research 38, 6 (1990),
974–992. https://doi.org/10.1287/opre.38.6.974

Jan Novák, Andrew Selle, and Wojciech Jarosz. 2014. Residual Ratio Tracking for
Estimating Attenuation in Participating Media. ACM Trans. Graph. 33, 6 (Nov. 2014).
https://doi.org/10.1145/2661229.2661292

C. Oates, M. Girolami, and N. Chopin. 2014. Control functionals for Monte Carlo
integration. Journal of The Royal Statistical Society Series B-statistical Methodology
79 (2014), 695–718.

Art Owen and Yi Zhou. 2000. Safe and Effective Importance Sampling. J. Amer. Statist.
Assoc. 95, 449 (2000), 135–143. http://www.jstor.org/stable/2669533

George Papamakarios, Iain Murray, and Theo Pavlakou. 2017. Masked Autoregressive
Flow for Density Estimation. In Advances in Neural Information Processing Systems.
2338–2347.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and
Balaji Lakshminarayanan. 2019. Normalizing Flows for Probabilistic Modeling and
Inference. arXiv:stat.ML/1912.02762

Vincent Pegoraro, Carson Brownlee, Peter S. Shirley, and Steven G. Parker. 2008a. To-
wards Interactive Global Illumination Effects via Sequential Monte Carlo Adaptation.
In Proceedings of the 3rd IEEE Symposium on Interactive Ray Tracing. 107–114.

Vincent Pegoraro, Ingo Wald, and Steven G. Parker. 2008b. Sequential Monte Carlo
Adaptation in Low-Anisotropy Participating Media. Computer Graphics Forum 27, 4
(2008), 1097–1104.

Matt Pharr, Wenzel Jacob, and Greg Humphreys. 2016. Physically Based Rendering -
From Theory to Implementation. Morgan Kaufmann, Third Edition.

Peiran Ren, Jiaping Wang, Minmin Gong, Stephen Lin, Xin Tong, and Baining Guo.
2013. Global Illumination with Radiance Regression Functions. ACM Trans. Graph.
32, 4, Article 130 (July 2013), 12 pages. https://doi.org/10.1145/2461912.2462009

Danilo Rezende and Shakir Mohamed. 2015. Variational Inference with Normalizing
Flows. In International Conference on Machine Learning. 1530–1538.

Fabrice Rousselle, Wojciech Jarosz, and Jan Novák. 2016. Image-space Control Variates
for Rendering. ACM Trans. Graph. 35, 6, Article 169 (Nov. 2016), 12 pages. https:
//doi.org/10.1145/2980179.2982443

Fabrice Rousselle, Claude Knaus, and Matthias Zwicker. 2011. Adaptive Sampling and
Reconstruction Using Greedy Error Minimization. ACM Trans. Graph. 30, 6, Article
159 (Dec. 2011), 12 pages. https://doi.org/10.1145/2070781.2024193

Vincent Sitzmann, Justus Thies, Felix Heide, Matthias Nießner, Gordon Wetzstein, and
Michael Zollhöfer. 2018. DeepVoxels: Learning Persistent 3D Feature Embeddings.
In CVPR.

Charles Stein. 1972. A bound for the error in the normal approximation to the dis-
tribution of a sum of dependent random variables. In Proceedings of the Sixth
Berkeley Symposium on Mathematical Statistics and Probability, Volume 2: Prob-
ability Theory. University of California Press, Berkeley, Calif., 583–602. https:
//projecteuclid.org/euclid.bsmsp/1200514239

László Szécsi, Mateu Sbert, and László Szirmay-Kalos. 2004. Combined Correlated
and Importance Sampling in Direct Light Source Computation and Environment
Mapping. Computer Graphics Forum 23 (2004), 585–594.

László Szirmay-Kalos, Balázs Tóth, and Milán Magdics. 2011. Free Path Sampling in
High Resolution Inhomogeneous Participating Media. Computer Graphics Forum 30,
1 (2011), 85–97.

Esteban Tabak and Cristina V. Turner. 2013. A Family of Nonparametric Density
Estimation Algorithms. Communications on Pure and Applied Mathematics 66, 2
(2013), 145–164. https://doi.org/10.1002/cpa.21423

Esteban Tabak and Eric Vanden Eijnden. 2010. Density Estimation by dual Ascent of
the Log-Likelihood. Communications in Mathematical Sciences 8, 1 (2010), 217–233.

Ayush Tewari, Ohad Fried, Justus Thies, Vincent Sitzmann, Stephen Lombardi, Kalyan
Sunkavalli, Ricardo Martin-Brualla, Tomas Simon, Jason Saragih, Matthias Nießner,
Rohit Pandey, Sean Fanello, Gordon Wetzstein, Jun-Yan Zhu, Christian Theobalt,
Maneesh Agrawala, Eli Shechtman, Dan B Goldman, and Michael Zollhöfer. 2020.
State of the Art on Neural Rendering. arXiv:cs.CV/2004.03805

Justus Thies, Michael Zollhöfer, andMatthias Nießner. 2019. Deferred Neural Rendering:
Image Synthesis Using Neural Textures. ACM Trans. Graph. 38, 4, Article 66 (July
2019), 12 pages. https://doi.org/10.1145/3306346.3323035

Eric Veach. 1997. Robust Monte Carlo methods for light transport simulation. Ph.D.
Dissertation. Stanford, CA, USA.

Eric Veach and Leonidas J. Guibas. 1995. Optimally Combining Sampling Techniques
for Monte Carlo Rendering. In Proc. SIGGRAPH. 419–428. https://doi.org/10.1145/
218380.218498

Delio Vicini, Vladlen Koltun, and Wenzel Jakob. 2019. A Learned Shape-Adaptive
Subsurface Scattering Model. ACM Trans. Graph. 38, 4, Article 127 (July 2019),
15 pages. https://doi.org/10.1145/3306346.3322974

Marc Sabate Vidales, David Siska, and Lukasz Szpruch. 2018. Unbiased deep solvers for
parametric PDEs. arXiv:1810.05094 (Oct. 2018).

Jiří Vorba, Ondřej Karlík, Martin Šik, Tobias Ritschel, and Jaroslav Křivánek. 2014.
On-line Learning of Parametric Mixture Models for Light Transport Simulation.
ACM Trans. Graph. 33, 4 (Aug. 2014).

Jiří Vorba and Jaroslav Křivánek. 2016. Adjoint-Driven Russian Roulette and Splitting
in Light Transport Simulation. ACM Trans. Graph. 35, 4 (jul 2016).

Ruosi Wan, Mingjun Zhong, Haoyi Xiong, and Zhanxing Zhu. 2019. Neural Control
Variates for Variance Reduction. arXiv:1806.00159 (Oct. 2019).

Tomoya Yamaguchi, Tatsuya Yatagawa, and Shigeo Morishima. 2018. Efficient Metrop-
olis Path Sampling for Material Editing and Re-rendering. In Pacific Graphics Short
Papers, Hongbo Fu, Abhijeet Ghosh, and Johannes Kopf (Eds.). The Eurographics
Association. https://doi.org/10.2312/pg.20181271

Quan Zheng and Matthias Zwicker. 2019. Learning to Importance Sample in Primary
Sample Space. Computer Graphics Forum 38, 2 (2019), 169–179. https://doi.org/10.
1111/cgf.13628

ACM Trans. Graph., Vol. 39, No. 6, Article 243. Publication date: December 2020.

https://doi.org/10.1287/mnsc.44.9.1295
https://doi.org/10.1287/mnsc.44.9.1295
https://doi.org/10.1287/mnsc.44.9.1295
https://doi.org/10.1145/3130800.3130880
https://doi.org/10.1016/S0378-4754(00)00248-2
https://doi.org/10.1016/S0378-4754(00)00248-2
https://doi.org/10.1016/0378-4266(90)90039-5
https://doi.org/10.1016/0378-4266(90)90039-5
http://arxiv.org/abs/stat.ML/1908.09257
https://doi.org/10.1145/3306346.3323009
https://doi.org/10.1287/opre.30.1.182
http://arxiv.org/abs/cs.CV/1803.04189
https://doi.org/10.1145/3306346.3323020
https://doi.org/10.1145/3306346.3323020
https://doi.org/10.1145/3306346.3323027
https://doi.org/10.1145/3305366.3328091
https://doi.org/10.1111/cgf.13227
https://doi.org/10.1145/3341156
https://doi.org/10.1287/opre.38.6.974
https://doi.org/10.1145/2661229.2661292
http://www.jstor.org/stable/2669533
http://arxiv.org/abs/stat.ML/1912.02762
https://doi.org/10.1145/2461912.2462009
https://doi.org/10.1145/2980179.2982443
https://doi.org/10.1145/2980179.2982443
https://doi.org/10.1145/2070781.2024193
https://projecteuclid.org/euclid.bsmsp/1200514239
https://projecteuclid.org/euclid.bsmsp/1200514239
https://doi.org/10.1002/cpa.21423
http://arxiv.org/abs/cs.CV/2004.03805
https://doi.org/10.1145/3306346.3323035
https://doi.org/10.1145/218380.218498
https://doi.org/10.1145/218380.218498
https://doi.org/10.1145/3306346.3322974
https://doi.org/10.2312/pg.20181271
https://doi.org/10.1111/cgf.13628
https://doi.org/10.1111/cgf.13628

	Abstract
	1 Introduction
	2 Related Work
	3 Parametric Trainable Control Variates
	3.1 Modeling the Shape of the Control Variate
	3.2 Modeling the Integral of the Control Variate
	3.3 Modeling the CV Coefficient

	4 Monte Carlo Integration with NCV
	5 Optimization
	5.1 Minimizing Variance by Optimization
	5.2 Composite Loss for Stable Optimization

	6 Application to Light Transport
	6.1 Path Termination
	6.2 Implementation

	7 Results and Analysis
	8 Discussion and future work
	8.1 Extensions

	9 Conclusion
	Acknowledgments
	A Variance of the Control Variate Estimator
	References

